
Inl. J Hror Ma\ Transf~ Vol. 22. pp. 5X5-599 
Pergamon Press Ltd. 1979. Prmted m Great Britam 

THE WAVE EQUATIONS FOR SIMULTANEOUS 
HEAT AND MASS TRANSFER IN MOVING 

MEDIA-STRUCTURE TESTING, TIME-SPACE 
TRANSFORMATIONS AND VARIATIONAL APPROACH 

Institute of Chemical Engineering at the Warsaw Technical University. 
00-645 Warsaw, Warynskiego I, Poland 

(Recei& 16 Februarj’ 1978) 

Abstract--The functionals leading to the linear wave equations that govern heat conduction as well as 
simultaneous heat and mass transfer in moving media (in Eulerian representation) are obtained. These 
functionals are found simply by substituting equations of the time-space transformations into the 
functional of a quiescent medium which, in the general case, contains some matrix function as an 
important term. This function is associated with the matrix of the relaxation coefficients that appear in a 
general flux-force relationship, equation (41), which generalizes the Cattaneo equation [l] for a multi- 
potential case and which evolves into the classical Onsager [2] expression when the relaxation effects are 
neglected. A synthesis of the linear wave equations and corresponding variational principles is obtained 
together with many new results. The logically self-consistent mathematical theory of simultaneous heat 
and mass transfer involving relaxation effects is developed and its direct application to thermal diffusion 
in a two-component fluid is given. This theory shows, in matrix notation, an important and remarkable 

analogy to the theory of pure heat conduction with non-Fourier heat flux. 

NOMENCLATURE 

a, heat diffusivity; 

aikr element of matrix of scalar derivative 

transformation, e.g. temperature 

derivatives ; 

B, matrix function in equation (93); 

CP heat capacity ; 
C, thermostatic matrix of capacities ; 

G speed of light in vacuum; 

CO3 constant speed of propagation of second 

sound wave; 

cha = - C,( T”)2, thermal capacity ; 

Cik, capacities of the medium, equations 

(48) and (49); 
D, D,, diffusion and thermal diffusion 

coefficients, respectively; 

E, unit matrix ; 
G, modulus of shear rigidity; 

h, enthalpy of mass unit; 

id k 1, indices of coordinates ; 
hl, h,. partial enthalpies of components 1 and 2; 
J,, J,, vector of density of pure heat flux and 

irreversible energy flux, respectively; 

JZ> heat flux in binary system; 

J,,...,J,-,, vectors of densities of 

diffusive mass fluxes (components 

l,...,n-1); 
J, = co1 (J,,J, ,..., J,_,,J,= J&column 

matrix of all independent fluxes ; 
K(t - t’), matrix describing relaxation 

nucleus, equation (35); 

L, Onsager’s matrix with elements Lik; 

I, = co1 (t,x,,x,,+), column matrix of 
time-space coordinates ; 

Lh, = A( T”)2, Onsager’s coefficient for 

pure heat transfer; 

M,, M,, molar mass of components 1 and 2 ; 
r, 
S, 
s, 
T 
TO, 

L 

V, 

V, 
'k, 

= (x, J‘, z), radius vector; 

action functional; 

entropy of mass unit; 

temperature; 
reference temperature at which 
coefficients of linear differential 

equations are evaluated; 
time ; 

,...,- - 

column matrix of transfer potentials; 

= (t:,, uY, r,), constant Cartesian 

velocity of medium investigated ; 
volume; 

thermodynamic force, equation (34), 
k= 1,2,...,n; 

= co1 (X,, x,, , x,_ 1, x, = XJ, 
column matrix of thermodynamic forces; 

x, y, z, Cartesian coordinates ; 
-YlrX2,X3, arbitrary orthogonal coordinates 

considered ; 

4’j3 mass fraction ofjth component; 
.O 

!j> reference mass fraction ofjth component 
at which coefficients of linear differential 
equations are evaluated; 

2, = co1 ())1, 4j2,. , y,_ I, h), column matrix 
of thermodynamic state of mixture; 

V2, Laplace operator; 

A, increment, excess with respect to 
reference state; 
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CL d’Alembert’s operator, 0 = V2 - & ; 

no> d’alembert’s operator based on second 
sound speed. 

Greek symbols 

Y? z.z (1 - 2:2/c2) - ' '2 

YO3 ZZ (1-v2/C;5)-1’2 I ’ 

coefficients in equations of 
transformations II and III, resp.; 

6, variational symbol ; 

P? mass density; 

z, matrix of relaxation coefficients; 
rd, tlr, I=, relaxation times for diffusion, 

heat and thermal diffusion, respectively; 

Pm, chemical potential of component m; 
(i, Lagrangian ; 
3 “, heat conductivity; 
, A,, . . , I,, eigenvalues of matrix A. 

Superscripts 

6, 

proper frame, in which medium rests; 
reference state at which coefficients 
are computed; 

T, transpose matrix; 
* , new fluxes, forces and capacities. 

Subscripts 

h, heat ; 
0, related to speed c,; 

P2 pressure; 

43 energy in coupled process. 

1. INTRODUCTION 

THE PRESENCE of relaxation terms in the non-Fourier 
type phenomenological equations, which link tog- 
ether the fluxes and gradients of the transfer 
potentials, leads to wave (hyperbolic) partial differ- 
ential equations of change. The basic feature of the 
wave equations is that the local disturbance of any 
transfer potential in any originally homogeneous 
medium propagates with a finite speed co. Thanks to 
this fact, there exist two regions in this medium, at a 
definite instant of time, namely, the disturbed region, 
in which physical changes are already observed, and 
the undisturbed region, in which the medium is not 
altered. This explains the physical paradox of an 
infinite speed of disturbances resulting from standard 
parabolic equations, which has been noted by 
Luikov [3,4], Cattaneo [l], Vernotte [5], Kaliski 
[6] and others. A thoughtful discussion of the 
qualitative properties of the heat equations with 
finite propagation of distur~nces is provided by 
Hamil and Baumeister [7] as well as by Berkovsky 
and Bashtovoi [8]. Solutions, which describe the 
mass transfer, have been given, among others, by 
Luikov, Bubnov and Soloviej [4,9]. A number of 
other contributors are listed in the earlier work of 

the present author [lo], which the reader is referred 
to before reading this paper.? 

For the case of pure heat conduction in quiescent 
media, the form of the wave equations quoted in 

literature is well defined, cf. [4,6]. However, as 
regards heat conduction in moving media, the form 
of the wave equations is not determined definitely; as 
we shall see later, equations given in various papers 
differ from one another. As far as coupled transport 
processes are concerned, i.e. when there is a 
simultaneous heat and mass transfer. the differences 
in the form of the wave equations are observed for 
both the moving and quiescent media. 

Therefore, the objective of the present paper is to 
provide a unified and systematic method which will 
explain the differences in the basic forms of the linear 
wave equations for moving media and also will 
facilitate the derivation of wave equations of the 
coupled heat and mass transfer (in quiescent and 
moving systems) in a uniform way. This method will 
exploit a variational approach and it will also apply, 
in a moving medium case, the equations which 
describe the time and space variable transformations 
(linking these variables in stationary and moving 
frames) into the functionals describing a physical 
system in its proper frame. The operator description 
used will allow direct application of the present 
results to the case when the arbitrary orthogonal 
curvolinear coordinates are employed. 

The solids and fluids are considered which are 
characterized by a single mechanism of an isobaric 
transport of energy and mass moving with a 
constant velocity. The constancy of the internal and 
transport properties (e.g. densities, capacities, diffusi- 
vities, Onsager coefficients, relaxation times, etc.) is 
assumed and viscous dissipation is neglected.* This 
constancy indicates that the assumptions typical of a 
linear description are accepted. Consequently, it will 
be assumed that every coefficient of the wave 
equation investigated is evaluated in some reference 
state (To, yp) defined within the region considered. It 
will be shown that under this assumption, the wave 
equations based on various transfer potentials (e.g. 
on temperature T and the temperature reciprocal 
T-l) can be precisely transformed analytically into 
one another, if the usual irreversible thermodynamics 
requirement of not too large gradients is satisfied for 
both space and time derivatives. 

In most cases the differences between various 
forms of the linear wave equations are observed 
mainly in those equations that concern the moving 

iIn [lo] the variational principles for uncoupled transfer 
processes are discussed and, therefore, it will serve as an 
excellent introduction to the more advanced treatment 
performed here, which includes both the analysis of the 
coupled processes and some invariancy tests. 

?In [lo], the method of taking into account some 
velocity distribution with the help of a linearized equation 
of motion is discussed. It is omitted here since the 
assumption of constancy of v does not influence the form of 
wave equations obtained for heat and mass transfer. 
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media. These differences constitute the first principal present status of the theory investigated and adjust 
object of our interest in the present work. the material known so far. 

However, in the case of a simultaneous heat and 
mass transfer, the rigorous self-consistent mathemati- 
cal theory of wave equations has not been developed 
as yet even for a resting medium. Therefore, the 
formulation of such a theory for a quiescent 
multicomponent fluid, and its extension to moving 
media, is the second basic object of this work. 

The three kinds of generaIization of the most 
popular linear hyperbolic heat equation [see equa- 
tion (2) in Section 2 for heat conduction in a 
quiescent solid] are available in literature, these 
generalizations being concerned with moving me- 
dium. These are presented below in an abbreviated 
form with the use of the first and second substantial 
derivative operators.? 

The first of the generalized equations is 

A complicated form of the heat- and mass-transfer 
equations (either of a parabolic or of a hyperbolic 
type) makes these equations difficult to solve. 
Therefore, it is worthwhile to consider simul- 
taneousty the variational principles leading to the 
wave equations. By obtaining the appropriate fun- 
ctionals, approximate fields of the transfer potentials 
can be found with the use of the direct variational 
methods [14,15]. It is essential to note that for 
conventional (parabolic) equations of the non- 
stationary transport processes no classically defined 
functionals have been found although there are 
many non-classic variational methods such as the 
local potential method [16]. On the other hand, the 
classical principles of non-stationary wave transport 
equations do exist as it has been shown in [17, 181 
and [lo] for the uncoupled transfer processes. 

see [I l]. The second has the form: 

y E (I_ u2/c2 j- 112 tat 

see Kranys’ work [12]. The latter equation is a 
relativistic one, so it deals with the two characteristic 
speed values: the speed of light in vacuum, c, and the 
speed of heat wave propagation, co, measured in a 
quiescent medium (proper frame). The last, third, 
equation is as follows: 

d2T fi+pT+~=O; (C) 
0 

cf. [lo] as well as the mathematical analogs of this 
equation given by Kar [I3] for velocity potential. 

Equations (A)-(C) were obtained by different 
methods and in each case under different physical 
assumptions. Equation (A) was derived by Bubnov 
[ 1 l] as a result of the statistical analysis of a mono- 
atomic gas. Equation (B), however, was found [12] 
after some reasoning which has led to the invariant 
form of the Cattaneo equation (cf. [l]) and the 
energy conservation equation in time-space x, y, 2, 
ct, followed by their combination. Finally, equation 
(C) was derived by the author [lo] as a result of the 
variational approach. It is quite clear that equations 
(A)-(C) are not equivalent, therefore it is advisable 
to examine the physical assumptions underlying each 
of them (of course apart from the already discussed 
assumption which refers to the constancy of thermal 
coefficients being common for all of the equations). 
Such an examination should reveal some generality 
in the method of obtaining the wave equations for 
moving media especially useful in a more difficult 
(and much less familiar) multipotential case when 
there is a coupled heat and mass transfer. Further- 
more, such an examination should explain the 

In the present paper the hitherto existing con- 
siderations leading to such principles will be genera- 
lized. This will permit the derivation of many new 
variational principles. They will describe the coupled 
heat and mass transport processes in moving media. 
The way of deriving them is to employ equations 
describing transformations of the time and space 
coordinates in the functionals characterizing quies- 
cent media. 

The important fact, which will be used below, is 
the invariancy of the variational principle, 6s = 0, 
with respect to the transformations of independent 
variables x, y, z, t [ 191. Hence, in order to obtain the 
functional of the moving medium it is sufficient to 
know the adequate functional for a quiescent 
rn~i~ and then to express its space and time 
variables in space and time variables for a moving 
medium. This is in essence an approach resulting 
directly from the special relativity principle [20,21]. 
The functional S obtained in such a way leads to 
partial equations of heat and mass transfer in 
moving media, which can be easily checked by 
writing down the appropriate Euler equations. 

2. TIME-SPACE TRANSFORMATIONS 
AND VARIATIONAL PRINCIPLES 

FOR HEAT CONDUCTION 

The method in question will be illustrated first for 
the simplest case of heat conduction in a moving 
solid body. To do this, we shall employ the known 
[17, lo] functional which describes the non- 
stationary heat conduction in the coordinate frame 
in which the solid body rests. It is the so-called 
proper frame denoted here by primed symbols. In 
the case of a constant temperature on the boundaries 
of the system, the functional of heat conduction in 
the proper frame has the form: 

tThese operators are defined by equations (13) and (t6) 
of the present paper. dv’dt’, (1) 
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while its stationarity condition (Euler equation) is the 

following equation of heat conduction in a resting 
solid : 

-$v27-+$& = 0. 
0 

(2) 

The constants co (thermal wave propagation ve- 

locity) and a (heat diffusivity) as well as the 

temperature 7” = T will always be understood as 
measured in the system in which a solid rests (the 

proper frame). Hence, they will not vary during 
transformations of the space coordinates, so primes 

will not be important for them. 
The three kinds of time-space transformations will 

be employed. They express relations between the 
coordinates and time in the proper frame moving 

together with the solid (primed symbols) and the 

frame which is fixed in respect to the laboratory 

(non-primed symbols). 
The first of the transformations (I) are the well- 

known Galillean transformations [20] having the 
following form : 

t = t’ 

r = r’ fvt’ 
(3) I 

(4) 1 

where r = (x, y, z) is the radius vector. 

The next (II) are the relativistic generalized? 
Lorentz transformations (c.f. [20,21]) 

where I 
y = (,_02/c2)-w (7) i 

and c is the speed of light in vacuum. Although such 
exact transformations are not needed in engineering 

practice, we shall consider them though for the 

theoretical and methodological reasons. 

Transformations inverse to (5) and (6) will also be 

used. They have the form [20] 

The third type of transformations (III) is 
constituted by those which are based on Kar’s 
concepts [13], i.e. the “acoustic” transformations. 
They have the forms that are analogous to (5)-(9) 
but the basic speed is co which is the speed of heat 
wave propagation instead of c [the factor y. = (I 
---u~/c~)-~/~ is then used]. 

It should be emphasized that only transformations 
II yield a precise physical description. Transfor- 
mations I, as is well known, are precise enough only 
if u < c. Similarly, transformations III are sufficiently 

tThe velocity v is not. in general, parallel to the one of 
the space axes. 

SIENIUTYCZ 

precise only in the case when L’ < co (since c0 is of the 

order of sound velocity, transformations III are 
practically applicable only to subsonic flows). Be- 
cause all of these inequalities are fulfilled in the 
majority of practical cases and the non-relativistic 

equations are always more simple, it is useful to 
discuss the heat-transfer equations derived on the 
basis of all the three kinds of transformations. 

The first (time or space coordinate) partial 

derivatives of any scalar, particularly of temperature 
T, are transformed according to the following rule: 

;; = kiC, Cl& :_m; . (10) 
I 

for i = 0, 1, 2, 3 where I, are the elements of the 

column matrix 

I = co1 (f. .Y,, .x2. .x3), (11) 

while aik = &/?I, are the elements of the Jacobi 

matrix corresponding respectively to transformations 

I, II or III. For the second partial derivatives of any 

scalar the following rule holds: 

By substituting equations (3) and (4) into 

(lo)-(12) it may be proved that when coming to a 
reference system in which the solid is in motion 
(non-primed) the following relations (transfor- 

mations rules) are valid for transformations I: 

grad’ T = grad T (14) 

(V’T)’ = V2T (15) 

+ v grad (v grad T) (16) 

dV’ = dV: dt’ = dt. (17) 

Formulas (13) and (16) mean that the first and 

second partial derivatives of a scalar are converted in 

the laboratory (non-primed) frame, respectively. into 
the first and second substantial derivative. Calculat- 
ing d2T/dt2 as 

$=(i+vgrad)[g+vgradT) 

2 

=$+Zvgrad’$ 

+vgrad(vgradT)+zigradT.. (16a) 

the reader can check that the central expression of 
(16) describes the expanded form of the second 
substantial derivative when v = constant (inertial 
frame). 

For transformations II the following rules are 
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obtained with the help of equations (5)-(7) and 

(lO)-(12):t 

dT 
=ydt (18) 

1 aT 2 
(grad’ T)’ - - - 

(1 c2 at! 

2 (19) 

q ‘T = UT PO) 

PT 2 (?‘T 

I 

^ 
-= 
(3p y ;b+2vgradg 

d2T 
+v grad(v grad T) = y2 T 

I 
(21) 

dV’dt’ = dVdt. (22) 

In the case of transformations III, the formulas 

analogous to (18)-(22) are valid, in which yO replaces 

y, c,, replaces c and the d’Alembert operator is 
defined as q ,T, i.e. it is based on the heat wave 

propagation velocity c,,. Because of this close 

resemblance, the writing of appropriate formulas is 
left to the reader. 

By employing formulas (3)-(4) and (13)-(17) in 

functional (l), the following functional for heat 
conduction in a moving solid can be found: 

s =.; 

-(gradT)’ exp % dVdt, (23) 
10 

which is invariant with respect to any Galillean 
transformation describing the transition from one 

inertia1 system to another (both systems may be in 
motion relative to the observer). The condition of 

stationarity for the functional (23) (Euler equation) 
is the following wave equation of heat conduction in 

a moving solid : 

-V2T 

+ v grad (v grad T) = 0. (24) 

A concise form of equation (24) is obtained by 

using the operators of the first and the second 
substantial derivatives [see the RHS’s of equations 
(13) and (16)] as well as the Laplace operator which 
gives : 

f!372~+~~4, (25) 
0 

tMany of the formulas given here are imparted with the 
properties of three- or four-dimensional geometry cor- 
responding to transformations I, II or III. The method 
described in this paper may turn out to be not always the 
most effective one but it is the most elementary since it does 
not require the knowledge of these geometries or the tensor 
calculus. 
HMT VoL22,No.4--G 

i.e. equation (A) in the Introduction. Although 

equation (25) is natural and simple generalization of 

equation (2), the functional (23), which leads to this 

generalization, is not known in the hitherto- 

published papers (the functionals known so far are 
not Galillean but, as we shall see later, they 
correspond to transformation III). Similarly, the 
functional which generalizes equation (1) in the 

relativistic case (transformation II) is not known 

either. Based on the above-given results, this fun- 
ctional is, however, easy to obtain. It is enough to 

note that equation (1) can be rewritten in the form: 

x exp 

for which the invariant structure of equation (19) is 
easily exploited. Using in addition formulas (8) and 

(22) in equation (26) results in the following 

functional for heat conduction in a moving solid: 

I-; dVdt. (27) 

The functional (27) is invariant with respect to 

transformations II used for any two inertia1 systems 
(with regard to the rule of velocity addition 

corresponding to this transformation). The condition 

of stationarity of the functional (27) is the following 
Euler equation: 

+($-$)y’[$+Zvgradg 

+vgrad(vgrad T) = 0 (28) 

or, after introducing operators of the first and second 
substantial derivatives and the d’Alembert operator: 

(29) 

i.e. equation (B). Equation (29) is known from 

literature. It has been obtained by Kranys [12] who 
used a different method in which an invariant form 
of the Cattaneo-Vernotte equation [see equation 
(72)] in a time-space ct, x1, x2, x3 was combined 
with the energy conservation law. However, the 
variational principle [functional (27)] has not yet 
been known. It leads to equation (29). As is seen, the 
form of the functional (27) is somewhat complicated 
and it is only the systematic approach used which 
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makes the finding of the fu~c~i~~a~ possible. Note 
that if it is assumed that c + W, then equations (27) 
and (28) are, as is expected, simplified respectively 
into equations (23) and (24). 

The simplest functional and the corresponding 
wave equations are obtained in the case when 
transformation III is used (this is the only reason far 
employing this transformative al all). Since it is 
based on the heat pro~gati~~ vebcity cO, the factor 
in brackeis before the &xpo~~~~~a~ term of equation 
(t f is transformed in~riant~y. The exponential term 
itself has the form (30) [according to equation (8) for 
:’ = 7, and c = ~~3: 

(3 f ) 

The Euler equation for the above Functionaf is 

(32) 

Considering that the use of transformation III has 
physicat meaning only for small velocities (v $ co). it 
can be assumed that in equations (31) and (32) yO 
z (I-o~/c$-“‘” z 1. Equations (31) and (32), sim- 
pKSed in such a manner, are known in literature 
[to, I7], see afso equation (C), 

The present approach helps to understand the 
fulfillment of the requirements of the special re- 
lativity principle [2lJ by the original equations given 
in [IO]. Namely, they are invariant with respect to 
transformation iI1 in the physically admissible case 
of small velocities (0 6 co). However, for velocities u 
comparable with the heat propagation speed, cO. the 
mentioned equations, as well as equations (31) and 
(321, become meaningless. This ~irnjtat~o~ should be 
kept in mind despite the fact that the condition 
D < cO is fui~~~ed in the majority of practical cases. 

For c < ci3+ i.e. when ya 3 I, equations (31) and 
j32) yiefd the simplest possible d~sc~p~~on of heat 
conduction in a moving solid, which ensures the 
consideration of the limited heat propagation speed 
cO. In these. ragher rare, eases where the velocities e: 
are c~m~rable with cOr the more- complex equations 
(23) and (24) are rather precise. They have wider 
range of applicability and become meaningless only 
for the velocities F comparable with the light speed c. 
For u close to c, tke reialivistic effects appear which 
are taken into account in equations (28) and (29). 

Summarising the above, we conclude that the 
available linear k~~rboli~ equations have the form 
invariant with respect to one of tke t~ansfo~at~ons~ 
i, If or III. Thus, the unified approach presented here 
ascertains, classifies and explains some basic 

theoretical aspects. It will aiso be shown that this 
approach allows a number of unknown results to be 
obtained in the multipotential case involving the 
coupled heat and mass transfer in flowing fluids. 

3. A DESCRWTiUN OF COUPLED 
HEAT AND MASS TRANSFER FREE FROM TIIE 

PARADOX #F THE INFINITELY FAS? 

OISTURBA~C~ ~R~PAGAT~o~ 

For coupled processes it is necessary first lo define 
the basic structures of the hyperbolic equations in a 
system at rest. Processes in a resting n-component 
mixture with mechanical equilibrium conditions (P 
= con&) are now considered. In the present paper. 
we shall restrict ourselves to the wave equations 
consistent with such a form of the phenomenoio~ic~ll 
equations (which link together the thermodynamic 
Ruxes and forces] wkick are based on our general- 
ization of the equ~~~iot~ obtain& by Shter [22’j who 
modified Onsager’s f2] classical r~~a~~onships. 

The Sk&r modi~ca~ion takes into account the 
relaxation phenomena and has the foltowing form: 

f; = i L, i” ~~~~*~~~~-~ff~~f~~, (33f 
k= 1 J 0 

where J&i= I,...,n- 1) is the density of the ith 
component flux, white J, E J, is the density of the 
irreversible energy flux. X,‘s are the thermodynamic 
forces defined as: 

, (34) 

where p, is a chemical potential of the fith 
component. The function Kit--r”) denotes the so- 
called relaxation nucleus and it is the scalar function 
in Shter’s original formulation [22]_ It leads ta a 
most approximate conclusion about a single re- 
laxation time being common for all the fluxes. 

In the present paper Shter’s equation is general- 
ized in the supposj~~on that the relaxation nucleus is 
some matrix function K(t - P), defined below, and it 
was shown that this concept Ieads to a mm proper 

confusion about tke matrix of the relaxation 
eo&Xents.t The genera&& eqquation (33) has the 
Fo~jo~~n~ matrix form : 

where 
J=cot(J,,J,,...,J,~J,) 

and X~COI(X,~X,,...,X,~X,) (36) 

(the matrix notation foifows de Groat [2] de- 
scription of the vector set .J f,. . . . J, and X1.. . . . X, IV 

-~__ -~ 
TThe elements of this matrix can be computed with the 

help of equation (57) in this paper. They are generally 
cafkd the relaxation coefficients, but not the re~~~~~t~~~ 
times, since only diagonal elements have always the time 
dimension. 
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If it is assumed that the relaxation nucleus matrix, 
K(t - to), is equal to the product of the delta function 
and unit matrix E, i.e. K(t- to) = s(t-t”)E, then 

relations (35) evolve into the classical Onsager 
relations: 

An equivalent matrix form of equations (45) and 
(46) is 

or 

J = LX (37) 

Ji = i Li,X,. (38) 
i=l 

For an alternative form of the relaxation nucleus 
(containing the matrix exponential function,? exp[ 
-s-‘(t-t’)]), i.e. for the form 

K(t-to) = 5-l exp[-r-‘(t-to)], (39) 

relationship (35) can be written as 

s 

f 
exp[r-‘t]rJ = exp(z-‘t”)LXdto. (40) 

0 

Differentiating both sides of equation (40) with 
respect to r and simplifying the exponential term (the 
exponential matrix is non-singular) give the follow- 
ing matrix equation for a resting system: 

ZJ 
T~+J=LX (41) 

or 

,ir 7ik 2 f Ji = ,il Likxk 

(i = 1,2 , , n, J, ~ J,, Lik = Lki). (42) 

Equation (42) represents generalization of the 
phenomenological Cattaneo-Vernotte relationship 
[see equation (72)] for a coupled multipotential 
process. 

Taking the divergence operator for (42) and 
employing the mass and energy conservation equa- 
tions, i.e. 

: 1 

p%= -divJj (j= 1,2,...,n-1) (43) 

ah 
pit = -divJ 4’ 

where yi is the mass fraction of a component, h the 
enthalpy of mass unit yield the following system of 
wave equations for mass and energy transfer in a 
quiescent medium : 

tThe basic properties of functions of this kind are given in 
the Appendix. 

a22 az 
pr!t2+p~+LV2u = 0 (47) 

where 

Z~COl~r,!.2 ,..., ?‘.-,,h); 

Pn-Pn-I 1 
-“‘.‘-’ r T 

(474 
The coefficients of equations (45) and (46) are linked 
with the coefficients of equation (42) as: 

Ljq G L, for j E 1,2,. . . , n - 1 and L,, = L,,. 

In the general equation (47), there are no assum- 
ptions regarding the matrix of the relaxation coef- 
ficients zik. 

In equations (45) and (46) the mass fractions yi 
and the enthalpy h are functions of the transfer 
potentials (p”--p,)/T (m = l,..., n- 1) and l/T. 
Thus, in order to go over to the group of 
independent variables, the first of the variables (yi, h) 
are expressed in terms of the other. The differentials 
dyj and dh are described by the equations: 

dyj = i$: cj,,,drF)+cj,rd(+) (48) 

dh= 1 :I: c,,d(F)+c,,d(;)> (49) 

where the coefficients cik are the so-called capacities, 
i.e. the first-order derivatives of yj and the enthalpy h 
in relation to the transfer potentials. As for the 
constant pressure, the following thermodynamical 
relation is valid: 

d 
0 

$ = hd(l,T)+ “i y,d , (50) 
m=l 

then the capacities are the second-order partial 
derivatives of the function p,/T with respect to 
variables (p,,-p,)/T (m = 1,2,. , n- 1) and l/T. 
This means that they fulfill the symmetry relations 
cik = cki, (i, k = 1,2,. . ,n), similar to the Onsager 
symmetry relations Lik = L,,. The matrix form of 
equations (48) and (49) is: 

dz = Cdu. (51) 

Substituting equation (51) into equation (47) and 
assuming that the coefficients cik and Onsager’s 
coefficients Lik are constants which are evaluated at 
the same reference state (T’,J$‘, . , yf- ,) defined 
within the region considered (theassumption typical of 
thelinearthermodynamics), thefollowinglinearmatrix 
equation is obtained: 

prC~+pC$+LV2” = 0. (52) 

The two symmetrical matrices are linked with this 
equation, namely: the positively-determined kinetic 
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Onsager matrix, L = [&Jr and “thermostatic” mat- 
rix of capacities, C = [c,J. It is meaningful that the 
matrix C is negatively determined, because it is that 
very matrix which appears in the fluctuation theory 
for a square approximation of entropy deficiency of 
closed system caused by the lack of thermodynami- 
cal equilibrium in the system.? see [2. 161. 

4. COMPWATION OF THE RELAXATiON 
COEFFICIENTS TiL 

The phenomenologicai equation (41) or (42) and 
also the wave equation (47) or (52) are equally well 
appiicabie when the matrix of the relaxation coef- 
ficients T is given independently of the matrices L 
and C as well as when there is some relationship 
between the elements of these three matrices. 

For ideal gases, this reiati~~nship is a consequence 
of the fact that the speed of propagation of thermal 
and mass waves (and also of a momentum wave) are 
identical. i.e. that the propagation speed. co. has a 
scalar nature. This identity is a result of the kinetic 
theory. see [23, 26, 27, IO]. and holds for the 
molecular transport of heat. mass and momentum. it 
appears [23,27] that the propagation speed is of the 
order of sound speed under the given conditions. 

For liquids and solids. the assumption about the 
scalar nature of the propagation speed is a hy- 
pothesis, which might be partially supported by 
comparing the relaxation times data for heat transfer 
~~ given in [28]$ with those for momentum transfer 
r,,. evaluated in [?I]. It turns out that ratios ~,,,i’s,, 

are of the order of Prandti number in accordance 
with the hypothesis. However. it is clear that such a 
hypothesis can be valid only in the case of the same 
mechanism of heat and mass transport (as assumed 
in Section 1 of tlic present paper). Consequently, it is 
expected that the hyp~~thesis will apply in homo- 
geneous fluids (with thermal diffusion occurring as a 
cross-effect) and that it may not be true. for example. 
for the drying processes where a multiple mechanism 
of transport can occur. In this last case. the overall 
mechanism should be deduced from the partial 
mechanism to which our theory can apply. 

Let us consider which of the restrictions on the 
matrices t. L and C results from the condition of a 
scalar nature of co. That this could be accomplished, 
it must be remembered that such a restriction should 
also be valid for the case of pure heat transfer in a 
bone-component fluid. In such a case the definitions 
of the thermal capacity coefficient. ch. equation (491, 

____-- ___-.-- .- ___- 
tlr appears that in our (isobaric) case 

= 1 i i c,,Atr,Au, = ’ ii’.\ 
-i=, p=, 3 

where Ps is the second derivative of entropy which is 
always negative. cf. [ 161 for more information. 

:The shear relaxation times given in [ZS] are over- 
estimated and should not be considered. 

and also the thermal conductivity iv lead to relations 

Ch = - C‘,(TV (53) 

t, = ‘I(T”)’ - ~~C~‘~(~*)~ = -j)(‘@ (54) 

where (I is the thermal diffusivjity and C, the weii- 
known heat capacity. 

In the case considered. the relaxation time for heat 
transfer, rh is a scalar related to the thermal 
diffusivity (I = D, by the known equation [4] : 

Hence, substituting (54) into (55) yields 

The above equation defines the thermal relaxation 
time, r,,, in terms of the parameters we are interested 
in, i.e. L, and cr,, The general matrix relationship 
sought (which links tl L and C) should also reduce 
to equation (56) when the Ruid becomes one- 
component. For a scalar nature of the propagation 
speed, such a condition is fulfilled by the matrix 
relationship: 

This enables one to compute the relaxation 
coefficients rik on the basis? of the capacities cik, 
equations (48) and (49). and the Onsager coefhcients 
L,. The propagation speed appearing in equation 
(57) can be computed from the known formula [4] 

co = (G.J,)‘,?, (58) 

where G is the modulus of shear rigidity that can be 
found theoretically or cxper~m~ntaliy [28,29]. For 
ideal gases G = P, i.e. the modulus of shear rigidity is 
just a pressure [24] and hence co = (P/p)“’ [26]. 
These results hold for the isobaric case (see [27] for 
some alternative consideration}. In an isohoric 
process, C, should rather appear instead of C’, in the 
energy equation and then, as shown in [23], the 
more proper result should be cD = [(C,P)/C,.,I]‘~‘, 
the speed of sound. The sound speed is also 
suggested to be taken as a first approximation of co 
in the case of liquids [28]. where C, is close to C’,, 
especially as an ultrasonic velocity at low frequencies 
(see example below ). 

Based on equation (5 1) and the data for Onsager’s 
coefficient from [30], the data of capacities and 
relaxation times were found for an isothermal 
Na,S0,/H,S04/HZ0 system in Michalski’s MsD 
thesis [31] supervised by the present author. iz 
sample of these data, based on the sound speed c,, is 
given in Table 1 below. 

#Note that -LC-‘:y = D. Here D is the difbsivity 
matrix, in agreement with definition of D in 121. Hence 71,k 

= D,lc& as in the case of pure heat transfer where TV 
= ok:,. 
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Table 1. Data of I,,, cik and tilr for an isothermal Na,SO,/H,SO,,IH,O system evaluated 
under the conditions T = 298.3 K, P = lo5 Nm-*, /, = 1163 kgme3, c0 = 1387m s-’ and 
for molal concentrations m~~,so, = IMH,~~, = 1.0832molkg-: (the coefficit%ts L,, and 
L,, were taken from experiments of [30]; hence there is son%%fference between L,, and 

LX) 

L,(kg’KJ-‘m-Is-‘) cik(kgKJ-I) Tilr(S) 

L,, = 9.9695 x lo-” cl, = -6.3089x lo-“ 711 = 0.6763 x lo-” 
LIZ = -3.4992 x lo-” c12 = 0.3876 x 1O-4 r12 = -0.4852 x lo-” 
L,, = -3.1376 x 10-l’ c Z, = 0.3876 x 1O-J SI1 = -0.1558 x IO_‘5 
L12 = 8.0049 x IO-“’ cZ2 = -2.3494 x lo-” ~~~ = 1.4967 x IO-” 

It may be verified that the values of the diagonal 

relaxation coefficients equal by the order of mag- 

nitude those for isothermal binary systems 

Na,SO,/H,O and H,SO,/H,O, the latter being 
computed with the help of common definition 7i 
= Dici2. It was found: z1 = 0.3535 x 10-‘5s, s2 

= 0.9527 x lo- ls s, respectively. Under the assum- 
ptions of the present work, heat relaxation time is T* 

= 0.663 x 10-13~.t 

5. BASIC EQUATIONS OF COUPLED PROCESSES 
IN THE PRESENCE OF RELAXATION EFFECTS 

Substituting expression (57) into the phenomeno- 

logical equation (41) and into the wave equation (52) 

gives respectively the following matrix relationships 

J = Lgrad u + q?J/ir. (59) 
CO 

since X = grad u, [see (34) and (47a)] and 

,C;+Lb’u--j$)=O. (60) 

Equations (59) and (60) together with the following 

matrix equation [resulting from (43), (44) and (51)] 
describing conservation laws 

PC; = -VJ, 

constitute the basic equations which characterize the 

coupled heat and mass transfer in the presence of 
relaxation effects. It can be readily seen that taking 

divergence of both sides of equation (59) and using 
the conservation law (61). the wave equation (60) is 
obtained. 

In applications, the wave equation (60) is most 

important. Its solution at the pertinent boundary 
conditions for example 

u(x, y, GO) = 4)(x, y. z) (62) 

u (x,, .l’,> z,, t) = u,(t) Lx,, ys, Z,)ES (63) 

hl(.x, y, z, 0) 

L?t 
=0 (j= 1,2,3) (64) 

allows determination of the fields of transfer poten- 
tials u(x, J’, z, t). 

tThe order of magnitude of r,, agrees with evaluations in 
[28] for liquids. 

An equivalent notation of relationships (60) is 

given below in the form of a set of the scalar wave 

equations 

Just as in the case of pure heat transfer, equation 

(2), equations (65) and (66) contain d’Alembert’s 

operators that replace more common Laplacians, 
since relaxation effects have ‘been taken into account. 

Equations (59) through (66) operate with the 

absolute temperature reciprocal l/T as an energy 
transfer potential and not with the temperature T 

itself as it is usually done in the special case of pure 

heat transfer. Therefore it is of interest to see how the 

equations mentioned evolve into the known non- 
Fourier equations in the special case mentioned. For 

pure heat transfer, equations (59) and (60) take the 

form 

Substituting equations (53), (54) and (56) into 
equations (67) and (68) and using relationships:? 

tApproximations (70) and (71) require stronger assum- 
ptions than (69) since they result from identity: 

in which the term containing the square of small value of 
aT/dxj was neglected. 
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fzT-_ 
c’t 

= - (Toy ;y (;-I (69) 

l?ZT 
-2 -(p);; ; iit - 0 (70) 

@T ---~ _(7.“)‘2& :; , 
2.x” - (1 (711 

gives the known Cattaneo-Vernotte equations (cf. 
[l, 4. 51): 

J, = -igrad T-$$ 172) 

'SIENIUTYCZ 

should hold for P = constant: 

dq’t = c;deLjT.P+c:,d[;) (76) 

dj-(/, -_h )dy =e* d 
12 1 ql 

T.P 

+c;,d ‘T = C,dT (77) 
ii 

[compare the RHS of equation (74) and the LHS of 
equation (77)]. Substituting the following thermody- 
namic formula (cf. [2]): 

Thus, we have shown, on the simplest example, that 
under the linear theory assumptions the wave 
eq~t~ons based on various transfer potentials (e.g. 
on T and l/T) can be transformed analytically, one 
into another, if a conventional requirement of the 
irreversible thermodynamics that the gradients 
should not be too large is met here for both space 
and time derivatives. It can be also shown that our 
conclusion is valid for various transfer potentials 
(u,, u2,. . , u,,) in a general coupled case. The anafysis 
below provides some example which focuses this 
question in a nontrivial way. 

6. TRANSFORMATION OF FLUXES AND 
FORCES AND CONSMTUTIVE EQUATIONS 

FOR BINARY THERMODIFFUSION 

In the case when the definitions of the thermody- 
namic fluxes and forces are changed according to the 
known rules of the Onsager irreversible thermody- 
namics, see [2], it can be shown that all of the 
general formulas derived previously, will remain 
valid for the new fluxes, forces and capacities. We 
shall discuss this important problem more exten- 
sively in another paper. Here we shall restrict our 
attention to the most simple example of isobaric 
binary system. 

It is well-known, see e.g. [Z], that for the heat flux 
of two-component mixture, defined as 

J,* = J,-(h, -h,)J,, (74) 

provided that the mass flux is unchanged, i.e. for Jz 
zz J ,,,, the the~odynami~ forces resulting from 
invariancy of entropy production are: 

T,P 
1 8,1fI =-- -- 

i! J-'~T dY, T,P 
grad yt (75) 

Xz=X,=grad G =$gradT 
(> 

[the Gibbs-Duhem equation was used in the first of 
equations (75)]. Our new capacities should now be 
consequently defined so that the following equations 

into equations (48) and (49) applied in the case 
when n = 2, and computing the differential ex- 
pressions d_yi and C,dT, it can be shown that the 
new matrix of capacities is again symmetric. Further- 
more, it results that this matrix is at the same time 
diagonal, i.e. it is of the form C* = diag(~~~.~~~) 
where (after using the Gibbs-Duhem equation) 

and 

c* = -C,T2. 
44 (80) 

The Onsager matrix, expressed in terms of more 
popular coefficients, i.e. the diffusion coefficient D, 
thermal conductivity A and thermal diffusion coef- 
ficient DT, is 

,l 

L* = 

-J (81) 

as it results from the definitions of D, and D, given, 
e.g. in [2]. Hence, substituting equations (79) (80) 
and (81) into equation (57) makes it possible to 
directly compute the relaxation coefficient matrix as 

TD !.~.Y~DTY 
L*c*-’ 

**=-__2_= 

2 
0 q/2 

PC0 

(82) 

It is convenient to express the matrix (82) in terms of 
the diffusionai and heat relaxation times, defined 
according to the known definitions [4,25] as 

D a iL 
t*=_Z; 

co Tii= i=- c 0 pc,c; (83) 

We must also introduce the following relaxation time 
for thermal diffusion 

t DTT 
T= 7’ 

CO 
(84) 
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Thus the matrix of the relaxation coefficient (82) is? 

r* = (85) 

Now using equations @I), (85) and (75) in the general 
phenomenologica1 refationships (41), the following set 

of constitutive equations is obtained: 

GJ, _Tdz-y~!$ (86) 

P 

%l Jz = --p.~~ TD, G T.Ygrady, -igrad T 
i i 

) (87) 

which describes coupled heat and mass transfer in 
binary fluid in thepresenceofrelaxation effects. This set 
is suggested to describe non-stationary thermal 
diffusion with finite wave speed. 

Taking divergence of equations (86) and (87) and 
using conservation laws, equation (43) for n = 2, as 
well as the following equation, 

pC,$ = -divJ,*, (88) 

the following set of wave equations are obtained in the 
constant coeficient case: 

?Y, 
Ye = PDU,Y, +PD~YIY:,~~UOT (89) 

ar ?h 
PC,~ = PYITDT dy, 

i ! p,TuoY~ +1noT (90) 

which operate with SAlembert’s operators based on 
the propagation speed. Thus, the d’Alembert’s oper- 
ators should, as a rule, appear in the equations of 
change to resolve the physica paradox of the finite 
speed of disturbances. If, however, this speed is taken 
to approach infinity, then equations (86) and (87) as 
we11 as (89) and (90) simplify to the known 
conventional form without the relaxation terms, see 
e.g. [2]. 

We see that we have found a self-consistent 
description of the coupled relaxation phenomena. It 
has the properties that lead to the classical de- 
scription when the propagation speed is assumed to 
be infinite. 

7. VARIATIONAL PRINCIPLE FOR 
THE WAVE EQUATIONS OF THE COUPLED 

PROCESSES IN THE RESTING SYSTEM 

The matrix wave equation (60) or the scalar 
equations (65) and (66) were formulated for the case 
of a quiescent medium (proper frame). We shall try, 
first of all, to find a variational principle for this case. 

?In the case of an ideal system the derivative (+,/d~~)r,~ 
appearing in the equations derived equals 

RT 

This will result in generalization of the functional (1) 
for the coupled transport processes, the generali- 
zation being unknown so far. Then, using the 
time-space transfo~ations I-III in the quiescent 
medium functional, we shall find the functionals 
describing simultaneous mass and energy transfer in 
moving media. Their forms will of course depend on 
the type of transfo~ation (I, II or III), but not for 
too large velocities, used in most practical cases, the 
results will be similar. 

We shall begin our reasoning with construction of 
an alternative form of the functional describing a 
pure heat transfer in which the temperature re- 
ciprocity l/T [and not the temperature T as in 
equation (l)], is the transfer potential. For such a 
form it will be easier to find the matrix generali- 
zation of this form for the multipotential case with 
coupled heat and mass transfer. Substituting equa- 
tions (.55), (56), (69), (70) and (71) into expression (1) 
yield the functional 

x exp(-L;‘c,p&‘)dV’dt (91) 

which is equivalent to the functional (1) with an 
accuracy to the constant multiplier (the primed 
symbols are again used for transformation purposes 
since the proper frame, moving together with the 
medium, is considered first). It may be easily verified 
that for the constant phenomenological coefficients 
L,, ch and c0 (under the assumption typical of the 
linear theories) the stationarity condition for equa- 
tion (91) is the wave equation (68). 

To obtain the variational principle for a coupled 
heat and mass transport we shall investigate the 
stationarity conditions for the following matrix 
generalization of the functional (91): 

s’= 

= 

- f g exp(-CL-‘p&‘)L g dV’dt’ f92) 
0 

with respect to all of the components of the transport 
potential vector 

We shall show that these stationarity conditions lead 
to the wave equations (65) and (66), i.e. to the matrix 
equation (60). In the following proof it is important 
that the matrix function appearing in equation (92), 
i.e. the function 

B = exp(-CL-‘pcit’)L = exp(r-‘t’)L (93) 

has a property of symmetry?, i.e. 
B = BT, (94) 

tSimilarly to Onsager’s matrix L, the generalization of 
which is, in some sense, the matrix B. 
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and that this is a consequence of the symmetry of 
matrices L and C. The proof of this property 
together with some basic information concerning the 
exponential matrix function exp(Ar), where in our 
case A = r- ‘, is given in Appendix. 

In the orthogonal curvilinear coordinates and for 
the Lagrangian given by equation (92), the set of the 

Euler equations for the variables u,. u2.. , u, has the 
following matrix form 

where in our case aA/& = 0. 

Since the matrix B is symmetric, we obtain 

(96) 

and 

~ = exp( - CL- ‘&t’)L grad’ u. 
igrad’u 

(97) 

Substituting equations (96) and (97) into (95), 
applying the formula for the product derivative of 
the matrices B and au/l? and employing the basic 

property of the matrix exponential function 

A exp(At’) = exp(At’)A. 
?t’ 

(98) 

(see Appendix) gives the relationship 

exp(-CL-‘pc2,t’) 

After analyzing the structure of (27) and substitut- 
ing equations (8) and (18)-(22) into the functional 
(92), the following functional is found for transfor- 

mation II 

x [L(v%-_&j+&] = 0, (99) 

S=SJ~~~~jgradu’exp[-CL-‘,lc:,;(i-~)] 

The functional (92) allows formulation of the 
variational principles for the moving medium, which 
are invariant in the sense of transformation I, II or 

III (see the following section). 

8. VARIATIONAL PRINCIPLES FOR 
WAVE EQUATIONS OF COUPLED HEAT AND 

MASS TRANSFER IN MOVING MEDIA 

Now, with formula (92) available, we can easily 
write the expressions for the action functional in the 

case when the medium moves with a constant 

velocity v. It is sufficient to make transformations I, 

II or III (Section 2) in the functional (92), as it was 

done previously in the case of pure heat transfer. In 
this manner the Galilean functional is obtained for 
transformation I : 

s= graduTexp( -CL-‘&t)Lgrad u 

-$($!+vgradurexp(-CL-lpciI)L 

x (s + vgradu)]dVdr. (101) 

from which the matrix wave equation (60) results, or, 

the set of the scalar equations (65) and (66). For a 

resting medium, we thus find the variational prin- 

ciple that leads to the coupled mass and energy 
equations. It is of interest that this principle replaces, 

in some sense, the principle of minimum entropy 
production valid only in a stationary case 123. 

Indeed, in the time-space s. y, Z, c,t, introduced in 

[IO], the functional (92) may be written in the form 

S’Zf 
.c1M 

J,;V,udR’ (dR’=dV’dt). (100) 

where J,, = (J,, J,. J,, J,) is comprised of four 
vectors of the n substitutional fluxes with the 

coordinates defined by the RHS of equations (96) 
and (97). (Note that in the space considered the 
scalar-product a,, b,, is defined as a&-ab and the 
vector operator is 

See [lo] and [32] for more information about the 
space mentioned.) 

The functionals (92) or (100) can be broken down 
into the product of the time increment by the 
functional of a half entropy source if the exponential 
term and the terms with time derivatives (stationary 
process) are ignored 

x exp[-CL-‘pcgy(i-$)I 

x L(g+vgradu)jdVdr. (102) 

For transformation III the fundamental velocity is 
c,,. Hence the functional (92) transforms into the 

simplest form 

I au’ 
x Lgradu-- --exp -CL~‘pc~~, 

c; iit I 

x (+jL$/dVdr. (103) 

We shall write the stationary conditions (Euler 
equations) for the functionals (lOl)-(103). Taking 
the components of u. i.e. potentials 

lI”_Pl A-A-1 1 
T 

) ( -__ 
T ‘,’ 

as varied variables, the Euler equations are obtained 
that generalize the matrix equation (60) or the set of 



Wave equations for simultaneous heat and mass transfer 597 

the scalar equations (65) and (66). For transfor- 
mation I [functional (lOl)] this generalization has 
the following simple operator form: 

The result obtained is in agreement with the 
alternative method in which the direct substitution of 
transformation relationships [equations (13)-(t6)] 
into equation (60) is made. The direct substitution is, 
as a rule, simpler than the variational method, but it 
looses the option of obtaining the valuable func- 
tionals for moving media [equations (lOl)-( 103)], 
these fun~tionals giving additional possibility to 
solve particuIar wave equations with the use of direct 
variational methods. Since, however, we have just 
these functionals known, therefore, the direct sub- 
stitution of the time-space relationships into equa- 
tion (60) may be used for verification. This was also 
the method used in the present paper yielding the 
same result as the method based on the Euler 
equations. 

For transformation I the already described equa- 
tion (104) was obtained, while for transformation II 
[functional (102)] 

This matrix relationship constitutes the generali- 
zation of Kranys’ equation, c.f. [12], for the case of 
coupled mass and energy transfer. Taking into 
account that equations (53), (54), (69), (70) and (71) 
hold for pure heat transfer, one may indeed show 
equivalency of equations (105) and (29) in this 
special case. 

For the functional (103) transformation III, the 
stationarity conditions take the simplest form 

P-$oC% + LlY$$l = 0 (106) 

where the coefFXient y0 and the d’Alembercian lJO 
are based on the propagation speed c,,. Since 
transfo~ation III is acceptable for small velocities, 
u 4 co, the approximation y,, z 1 can be made in 
equation (103). Equation (106) with ‘I’,, = 1 is then 
obtained as a stationarity condition of the functional 
(103) simplified in this manner. This s~pIification 
gives the following set of the scalar wave equations: 

which represent the set of the simplest possible 
equations allowing for a finite propagation speed. 
This set was suggested without proof by the present 
author in [34]. In case when c0 + co the set 
simplifies to the set of the classical parabolic 
equations given by de Groot [2]. 

The knowledge of the action integrals equations 
(l), (23), (27), (31) and (lOl)-(103) provides us with 
the method of obtaining the functionals given by 
direct variational techniques as, for example, in the 
Ritz or Kantorovich method, c.f. [14,15]. 

NumericaI examples of such an approach to 
equation (1) are given by Vujanavic (non-stationary 
cases) in his series of articles, see e.g. [17] and [18], 
as well as by Kashkaha [33] (the Ritz solution in 
stationary, classical cases). The variational method 
of finding the transfer potential fields is usuaIly 
characterized by a considerable accuracy, see e.g. 
author’s simple example in [lo}. It can be effectively 
used especially for the case of complex boundary 
conditions. 

9. DISCUSSION OF RFSULTS 
AND SIGNIFICANCE 

Using systematically the time-space transfor- 
mation equations in the functionals and wave 
equations for quiescent media, the appropriate 
functionals and equations were found for a medium 
moving with a constant velocity v. The wave 
equations obtained in this manner are also valid for 
any element of a moving fluid in which the 
distribution of velocity v (x, y, z, t) occurs. 

A logical self-consistent theory of the wave 
equations for the coupled processes with simul- 
taneous heat and mass transfer was developed based 
on the phenomenological equation (41) of the non- 
Onsager type that simplifies to the classical Onsager 
relation in the case of an infinite speed of pro- 
pagation, cO. Such a simplification can especially 
result from the new important formula, equation 
(57), which describes the matrix of the relaxation 
coefficients r as a function of the two basic matrices, 
the kinetic matrix of Onsager’s L and the static 
matrix of capacities C, which are well-known in the 
irreversible thermodynamics. It appears that all of 
the matrix relationships obtained for coupled heat 
and mass transfer generalize non-trivially the 
known relationships for pure heat transfer. 

The role of the exponential matrix function shouId 
be especially pointed out which plays a crucial part 
in our generalization of Shter’s expression [22] for 
the relaxation nucleus as well as in formulation of 
many new variational principles for coupled heat 
and mass transfer. This matrix function generalizes 
nontrivially the scalar exponential function exp(t/t) 
appearing in several variational principles for- 
mulated earlier [18. 10, 331 for pure heat transfer 
and other uncoupled cases. 

Application of the time-space transformations in 
the functionals ofresting media lead directly to the 
adequate functionals describing these media in 
motion. This simple systematic approach reveals 
some interesting feature of the hitherto existing 
variational principles [17, 10, 33, 341 applied to pure 
heat transfer or other uncoupled cases. Sometimes 
these principles contain velocity v (and not the speed 
of light c) in the exponential function and, as such, 
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they are neither of the Gaililean nor of the relativistic 22. 
type but rather of acoustic or “second sound” type 
[compare e.g. the functionals (23). (27) and (31) to 23. 

reveal this conclusion]. Although it does not usually 24. 
introduce considerabte errors. it should be re- 
membered that the principles quoted (and cor- 25. 

responding Ritz sofutions) will become meaningless 

for the velocities v comparable with the sound speed 
whereas the Gallilean type variationai principles will 

26. 

still be su~c~ently accurate. The material contained 27. 
in this paper allows one to perform such critical 

analysis and to make necessary adjustments. 
28. 

29. 
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APPENDIX 
~vrrte basic infor)~ation cottceril~~g matrix e~po~e~ti;z~ 
function, exp(Ar), as wei! as a pro~~oft~le s~}~~~~etr! 
property of& matrjxfancfion B 

Let A = [ajk] be a square matrix of order n (in the case 
of this work it can be the matrix A = r-l). The matrix 
function defined as [35,36]: 

exp(At) = c G iAl) 
p=” I’: 

is called the exponential function of the square matrix A 
with the parameter t. It is proved that the series (Al) is 
absolutely convergent for the arbitrary square matrix A. 

Assume that the two matrices A and fi are commutative, 
i.e. AD = DA. Then the fundamental property of the matrix 
exponential function is: 

exp(At)exp(Dt) = exp(A+D)t. (A21 

It results from (Al) that 

theory, Bull. U.M.I. 7. 317-391 (1973). 
19. I. M. Gelfand and S. W. Fomin, Calculus qf Variations. 

PWN, Warsaw (1970). 
$ [exp(At)] = A exp(At) = exp(At)A (A4) 

20. C. Bialkowski, CIassicaI Mechanics. PWN, Warsaw 
(1975). 

[compare equation (98) in the text]. 

21. D. Bohm, The Special Theory of Relativity. W. A. 
Let A, be the square matrix similar to the matrix A, e.g. 

Benjamin. New York (1965). A, = LAL- ’ (det L $0). 
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Then, exploiting the obvious properties of similar matrices see [37]. If the order of A is larger than 4 + 5, the use of 

L(A+D)L-’ = LAL-‘+LDL-’ 
computer is recommended. 

We are now prepared to prove the symmetry of the 
and matrix B, equation (93), in the text. Since 

L(AD)L-’ = LAL-‘LDL-’ B = exp(-CL-‘pcit’)L (93) 

it results from equation (Al) that and property (A3) holds, then taking into consideration 

exp(LAL-‘t) = Lexp(Ar)L-’ (A5) 

[consider equations (A6) and (A7) below]. 
The computation of the elements of the matrix exponen- 

tial function is an important problem, well-established in 
algebra [37]. The following methods are used: 

(a) transformation of exp(At) into a canonical form. 
Then exp(At) equals M exp(At)M-’ where M is the modal 
matrix and A = diag(l,. .A,). 

(b) summing up of the series (Al); 
(c) use of the Laplace transformation; 
(d) application of the CayleyyHamilton theorem, 

that 

one has 

L = LT and C = Cr, 

Br = Lexp(-L-‘Cpcit’) 

= Lexp[-L-‘(CL-‘)Lpcit’]. (A6) 

But from property (A5) it results that the above result 
equals 

Br = LL-‘exp(-CL-‘pcit’)L = B 

and the proof is completed 

(A7) 

LES EQUATIONS D’ONDE POUR LES TRANSFERTS SIMULTANES 
DE CHALEUR ET DE MASSE DANS LES MILIEUX MOBILES 

R&sum&an obtient la solution fonctionnelle des Cquations d’onde linkaire qui gouvernent la 
conduction thermique aussi bien que les transferts simultanCs de chaleur et de masse dans les milieux 
mobiles (dans la reprtsentation d’Euler). Ces fonctionnelles sont trouvies simplement $ partir des 
iquations de substitution par transformation espace-temps en fonctionnelle d’un milieu immobile qui, 
dans le cas gtniral, contient une fonction matricielle comme terme principal. Cette fonction est associee B 
la matrice des coefficients de relaxation qui apparaissent dans une relation g&n&ale flux-force, tquation 
(41), qui gtnCralise l’tquation de Cattaneo [l] pour le cas multipotentiel et qui couvre I’expression 
classique d’onsager [2] quand les effets de relaxation sont nkgligbs. Une synthbe des equations lintaires 
d’onde et des principes variationnels correspondants est obtenue en m&me temps que de nouveaux 
risultats. La thiorie mathematique des transferts simultaniis de chaleur et de masse avec effets de 
relaxation, est dtveloppte et on donne son application directe B la diffusion thermique dans un fluide B 
deux composants. Cette thtorie montre, en notation tensorielle, une importante et remarquable analogie 

avcc la thtorie de la conduction thermique basCe sur un flux thermique autre que celui de Fourier. 

DIE WELLENGLEICHUNGEN FtiR GLEICHZEITIGEN WARME- UND 
STOFFUBERGANG IN BEWEGTEN MEDIEN-STRUKTURTEST, 

ZEIT-RAUM-TRANSFORMATION UND VARIATIONSRECHNUNG 

Zusammenfassung-Es wurden die Funktionale hergeleitet, die auf die linearen Wellengleichungen 
ftihren, die sowohl die Wtirmeleitung als such den gleichzeitigen Wlrme- und Stoffibergang in bewegten 
Medien beschreiben (in Eulerscher Darstellung). Diese Funktionale werden einfach ermittelt durch 
Einsetzen der Gleichungen der Zeit-Raum-Transformationen in das Funktional fiir ein ruhendes 
Medium, welches im allgemeinen Fall eine Matrixfunktion als wesentlichen Term enthllt. Diese Funktion 
hlngt mit der Matrix der Relaxationskoeffizienten zusammen, die in einer allgemeinen Str6mungs- 
Energie-Beziehung vorkommen, Gleichung (41), welche die Cattaneo-Gleichung [l] fiir den Fall 
mehrerer Potentiale verallgemeinert und die bei Vernachkissigung der Relaxationseffekte auf den 
klassischen Onsager-Ansatz [2] ftihrt. Neben vielen neuen Ergebnissen wurde eine Synthese der linearen 
Wellengleichungen und der zugehiirigen Variationsprinzipien erreicht. Die logisch konsistente 
mathematische Theorie des gleichzeitigen W?irme- und Stoffibergangs mit Relaxationseffekten wurde 
entwickelt und ihre direkte Anwendung auf thermische Diffusion in einem Zwei-Komponenten-Fluid 
angegeben. Diese Theorie zeigt, in Matrizenschreibweise, eine wichtige und bemerkenswerte Analogie zur 

Theorie der reinen Wlrmeleitung mit nicht-Fourierschem WPrmestrom. 

BonHoBblE YPABHEHMX an54 OAHOBPEMEHHO~O ~EPEH~CA -mm 
M MACCbl B ABIGKYUIMXCFI CPEAAX ~ AHAJlM3 CTPYKTYPbI,_ 

nPOCTPAHCTBEHHO-BPEMEHHblE nPEOIiPA30BAHWl M BAPMA~MOHHblM IlOAXOfl 

AwwTaQnn - nOJyVCHb1 (PyHKUHOHaflbl. C IIOMOubm KOTOpblX MOmHO BbIBeCTH JIllHCfiHblC BOnHOBble 

YpdBHCHHn. O~llCblBaK)“,AC TCnJlOFlPOBOLIHOCTb. a TaKmC ORHOBpCMCHHbIfi TennO- H MaCCOnC~HOC B 

~BH~~~L+XCSI cpenax (a 3tineposoM npencrasneHm+ AaHHble +yHKueoHanbl nonysa+o-rca nyTeM 
npOcTOfi IlOfiCTaHOBKH IlpOCTpdHCTBCHHO-BpCMeHHblX COOTHOUICHBti B ~)‘HKUNOHaJl LUISI HCIlO~BWKHOfi 

C,ZW,bl, KOTOPbIii B o6lueM CJly’GiC B Ka~CCTBC BaTHOr KOMllOHCHTa COLEpWiT HCKOTOPYH) MBTPWqHYH) 

(PYHKUHtO. %a &HKWl CBlSaHZi C MaTpWCii fF5laKCaUllOHHblX K03@@li,HCHTOB, KOTOPblC ~O~~BJIHK)TCI( 

B o6qeM COOTHOUlCHHk, NISI nOTOKOB H CWI B YpaBHCHHlr (41). C IIOMOUbH) KOTOpOrO MOKHO 
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060(iWTb ypk+BHeHHe KaITaHeO [i 1 ,!I:lR MHO~OIlOTeHUMii.lbHO~O C~ly’itiSl H KOTOpOe B flfWZ6ptWeHlW 

pe.wKczauiloHHbmti 3+@eKTam nepexonm B imaccwecKoe nbrpaxewfe Otfsar-epa [2]. Hapany c MH~- 

, NMM “ORblMIf pe3y,lbTaTaMA nO:lyYes- CWHTe3 .TMHeiiHblX BO:lHOBbIX yp2dBHt!HHi! C COW’BeTCTBykOlQMMt( 

~Ip~~u~oHHhl~~~ II~MHuMII~MM. Pm~ma IIOi-HYeCKiI COr.laCOBaHHaR MareM~TRYeCKaR TeopNx OQHO- 

BpeMeHHOI’O TeilJIO- ii MW2OilepeHOC~i. Bh’:iWWOUGd~ pt%lKCLWfOHHble S$@eKTbI, N nOKt23aH0, KHK ee 

UO)(iHO HetlOCpeLlCTReHHO np~MeH~Tb C C.ly’iato :IH6$@yINM ‘iell;l:i B ~RyXKOM~OHeHTHO~ XGiiZKOCTlt. 

BaWtHbtht ILB:IRCICX TO, LfTO B MZITpWiHOM ~~~~I-~l~~ieH~~ 3ZSHWZik reOpMH ~i~~.lOr~~H~ TeOpHM $MCTOA 

it‘il.10IIpOROitHOflil. h‘OT,YW teil.lOBOfi IlOiOK He ~O~~~~iff~~~~ 3nKOHy @ypbe, 


