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Abstract—The functionals leading to the linear wave equations that govern heat conduction as well as
simultaneous heat and mass transfer in moving media (in Eulerian representation) are obtained. These
functionals are found simply by substituting equations of the time-space transformations into the
functional of a quiescent medium which, in the general case, contains some matrix function as an
important term. This function is associated with the matrix of the relaxation coefficients that appear in a
general flux-force relationship, equation (41), which generalizes the Cattaneo equation [1] for a multi-
potential case and which evolves into the classical Onsager [2] expression when the relaxation effects are
neglected. A synthesis of the linear wave equations and corresponding variational principles is obtained
together with many new results. The logically self-consistent mathematical theory of simultaneous heat
and mass transfer involving relaxation effects is developed and its direct application to thermal diffusion
in a two-component fluid is given. This theory shows, in matrix notation, an important and remarkable
analogy to the theory of pure heat conduction with non-Fourier heat flux.

NOMENCLATURE
heat diffusivity;
element of matrix of scalar derivative
transformation, e.g. temperature
derivatives;
matrix function in equation (93);
heat capacity;
thermostatic matrix of capacities;
speed of light in vacuum;
constant speed of propagation of second
sound wave;
= —C,(T°)? thermal capacity;
capacities of the medium, equations
(48) and (49);

D, Dy, diffusion and thermal diffusion

h,

iLjk,
hy, h,, partial enthalpies of components 1 and 2;

J,.J

q’

coefficients, respectively;
unit matrix;
modulus of shear rigidity;
enthalpy of mass unit;

1, indices of coordinates;

vector of density of pure heat flux and
irreversible energy flux, respectively;

J¥,  heat flux in binary system;

Jy.od,—1,  vectors of densities of
diffusive mass fluxes (components
1,...,n—1);

J, =col (J;,d,,...,d,~1, 4, = J ), column
matrix of all independent fluxes;

K(t—t'), matrix describing relaxation
nucleus, equation (35);

L, Onsager’s matrix with elements L, ;

1

= col (t,x,, x5, x3), column matrix of
time—space coordinates;

585

L,, = A(T°)?, Onsager’s coefficient for
pure heat transfer;

M,,M,, molar mass of components 1 and 2;

r, = (x, y, z), radius vector;

S, action functional ;

s, entropy of mass unit;

T, temperature;

T®,  reference temperature at which
coefficients of linear differential
equations are evaluated ;

t, time;

Ha— By B Hpey ]
u, *col( T T ,?>,

column matrix of transfer potentials;
v, = (v,, v,, v.}, constant Cartesian
velocity of medium investigated ;
v, volume;

X,, thermodynamic force, equation (34),
k=12 ...,n;

X, =col (X, X,, ..., X, 1, X, = X)),
column matrix of thermodynamic forces;

x, y,z, Cartesian coordinates;

Xy,X,,X3, arbitrary orthogonal coordinates
considered ;

Vis mass fraction of jth component ;

y?, reference mass fraction of jth component

at which coefficients of linear differential
equations are evaluated ;
z, = col (¥1,¥25- > Vu—1, 1), cOlumn matrix
of thermodynamic state of mixture;
,  Laplace operator;
A, increment, excess with respect to
reference state ;
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02
clor?”’
d’Alembert’s operator based on second
sound speed.

0, d’Alembert’s operator, (] =V —
Oo,

Greek symbols
7, = (1"‘1«‘2/(72)'”2
oo =(1—v*cf)” ”2}’
coefficients in equations of
transformations 11 and I1I, resp.;

é, variational symbol;

o mass density;

T, matrix of relaxation coefficients;
T4 Tps Ty, Felaxation times for diffusion,

heat and thermal diffusion, respectively;
in  chemical potential of component m;
A, Lagrangian;
A, heat conductivity;

Agsershy, cigenvalues of matrix A.
Superscripts
’, proper frame, in which medium rests;
0, reference state at which coefficients
are computed ;
T, transpose matrix;
*
b

new fluxes, forces and capacities.

Subscripts
h, heat;
0, related to speed ¢q;
D, pressure;
q, energy in coupled process.

1. INTRODUCTION

THE PRESENCE of relaxation terms in the non-Fourier
type phenomenological equations, which link tog-
ether the fluxes and gradients of the transfer
potentials, leads to wave (hyperbolic) partial differ-
ential equations of change. The basic feature of the
wave equations is that the local disturbance of any
transfer potential in any originally homogencous
medium propagates with a finite speed ¢,. Thanks to
this fact, there exist two regions in this medium, at a
definite instant of time, namely, the disturbed region,
in which physical changes are already observed, and
the undisturbed region, in which the medium is not
altered. This explains the physical paradox of an
infinite speed of disturbances resulting from standard
parabolic equations, which has been noted by
Luikov [3,4], Cattaneo [1], Vernotte [5], Kaliski
[6] and others. A thoughtful discussion of the
qualitative properties of the heat equations with
finite propagation of disturbances is provided by
Hamil and Baumeister [7] as well as by Berkovsky
and Bashtovoi [8]. Solutions, which describe the
mass transfer, have been given, among others, by
Luikov, Bubnov and Soloviej [4,9]. A number of
other contributors are listed in the earlier work of

the present author [10], which the reader is referred
to before reading this paper.t

For the case of pure heat conduction in quiescent
media, the form of the wave equations quoted in
literature is well defined, cf. [4,6]. However, as
regards heat conduction in moving media, the form
of the wave equations is not determined definitely; as
we shall see later, equations given in various papers
differ from one another. As far as coupled transport
processes are concerned, ie when there is a
simultaneous heat and mass transfer, the differences
in the form of the wave equations are observed for
both the moving and quiescent media.

Therefore, the objective of the present paper is to
provide a unified and systematic method which will
explain the differences in the basic forms of the linear
wave equations for moving media and also will
facilitate the derivation of wave equations of the
coupled heat and mass transfer (in quiescent and
moving systems) in a uniform way. This method will
exploit a variational approach and it will also apply,
in a moving medium case, the equations which
describe the time and space variable transformations
(linking these variables in stationary and moving
frames) into the functionals describing a physical
system in its proper frame. The operator description
used will allow direct application of the present
results to the case when the arbitrary orthogonal
curvolinear coordinates are employed.

The solids and fluids are considered which are
characterized by a single mechanism of an isobaric
transport of energy and mass moving with a
constant velocity. The constancy of the internal and
transport properties (e.g. densities, capacities, diffusi-
vities, Onsager coefficients, relaxation times, etc.) is
assumed and viscous dissipation is neglected.¥ This
constancy indicates that the assumptions typical of a
linear description are accepted. Consequently, it will
be assumed that every coefficient of the wave
equation investigated is evaluated in some reference
state (T, y?) defined within the region considered. It
will be shown that under this assumption, the wave
equations based on various transfer potentials (e.g.
on temperature T and the temperature reciprocal
T~!') can be precisely transformed analytically into
one another, if the usual irreversible thermodynamics
requirement of not too large gradients is satisfied for
both space and time derivatives.

In most cases the differences between various
forms of the linear wave equations are observed
mainly in those equations that concern the moving

+1n [10] the variatiopal principles for uncoupled transfer
processes are discussed and, therefore, it will serve as an
excellent introduction to the more advanced treatment
performed here, which includes both the analysis of the
coupled processes and some invariancy tests.

+In [10], the method of taking into account some
velocity distribution with the help of a linearized equation
of motion is discussed. {t is omitted here since the
assumption of constancy of v does not influence the form of
wave equations obtained for heat and mass transfer.
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media. These differences constitute the first principal
object of our interest in the present work.

However, in the case of a simultaneous heat and
mass transfer, the rigorous self-consistent mathemati-
cal theory of wave equations has not been developed
as yet even for a resting medium. Therefore, the
formulation of such a theory for a quiescent
multicomponent fluid, and its extension to moving
media, is the second basic object of this work.

The three kinds of generalization of the most
popular linear hyperbolic heat equation [see equa-
tion (2) in Section 2 for heat conduction in a
quiescent solid] are available in literature, these
generalizations being concerned with moving me-
dium. These are presented below in an abbreyiated
form with the use of the first and second substantial
derivative operators.t

The first of the generalized equations is

1dT  _,.. 14T

see [11]. The second has the form:
1dT 11 a3T
sdt DT‘“(E‘?)”zEZT: 0
y = (]_UZ/CZ)—I/Z, (B)
see Kranys’ work [12]. The latter equation is a
relativistic one, so it deals with the two characteristic
speed values: the speed of light in vacuum, ¢, and the
speed of heat wave propagation, ¢y, measured in a
quiescent medium (proper frame). The last, third,
equation is as follows:

147
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=0, (A)
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cf. [10] as well as the mathematical analogs of this
equation given by Kar [13] for velocity potential.
Equations (A)-(C) were obtained by different
methods and in each case under different physical
assumptions. Equation (A) was derived by Bubnov
[11] as a result of the statistical analysis of a mono-
atomic gas. Equation (B), however, was found [12]
after some reasoning which has led to the invariant
form of the Cattaneo equation (cf. [1]) and the
energy conservation equation in time-space x, y, z,
ct, followed by their combination. Finally, equation
(C) was derived by the author [10] as a result of the
variational approach. It is quite clear that equations
{A)-(C) are not equivalent, therefore it is advisable
to examine the physical assumptions underlying each
of them (of course apart from the aiready discussed
assumption which refers to the constancy of thermal
coefficients being common for all of the equations).
Such an examination should reveal some generality
in the method of obtaining the wave equations for
moving media especially useful in a more difficult
{and much less familiar) multipotential case when
there is a coupled heat and mass transfer. Further-
more, such an examination should explain the

+These operators are defined by equations (13) and (16}
of the present paper.

present status of the theory investigated and adjust
the material known so far.

A complicated form of the heat- and mass-transfer
equations (either of a parabolic or of a hyperbolic
type) makes these equations difficult to solve.
Therefore, it is worthwhile to consider simul-
taneously the variational principles leading to the
wave equations. By obtaining the appropriate fun-
ctionals, approximate fields of the transfer potentials
can be found with the use of the direct variational
methods [14, 15]. It is essential to note that for
conventional (parabolic) equations of the non-
stationary transport processes no classically defined
functionals have been found although there are
many non-classic variational methods such as the
local potential method [16]. On the other hand, the
classical principles of non-stationary wave transport
equations do exist as it has been shown in [17, 18]
and [10] for the uncoupled transfer processes.

In the present paper the hitherto existing con-
siderations leading to such principles will be genera-
lized. This will permit the derivation of many new
variational principles. They will describe the coupled
heat and mass transport processes in moving media.
The way of deriving them is to employ equations
describing transformations of the time and space
coordinates in the functionals characterizing quies-
cent media.

The important fact, which will be used below, is
the invariancy of the variational principle, S = 0,
with respect to the transformations of independent
variables x, y, z, t [19]. Hence, in order to obtain the
functional of the moving medium it is sufficient to
know the adequate functional for a quiescent
medium and then to express its space and time
variables in space and time variables for a moving
medium. This is in essence an approach resulting
directly from the special relativity principle [20, 21].
The functional S obtained in such a way leads to
partial equations of heat and mass transfer in
moving media, which can be easily checked by
writing down the appropriate Euler equations.

2. TIME-SPACE TRANSFORMATIONS
AND VARIATIONAL PRINCIPLES
FOR HEAT CONDUCTION

The method in question will be illustrated first for
the simplest case of heat conduction in a moving
solid bedy. To do this, we shall employ the known
[17,10] functional which describes the non-
stationary heat conduction in the coordinate frame
in which the solid body rests. It is the so-called
proper frame denoted here by primed symbols. In
the case of a constant temperature on the boundaries
of the system, the functional of heat conduction in
the proper frame has the form:

1 aTV? 1 s
w3 [ G & emar]

Z{f

x exp(%)dV’dt', 1
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while its stationarity condition (Euler equation) is the
following equation of heat conduction in a resting
solid:

l@T T T
a ot cier’?

The constants ¢, (thermal wave propagation ve-
locity) and a (heat diffusivity) as well as the
temperature 7' = T will always be understood as
measured in the system in which a solid rests (the
proper frame). Hence, they will not vary during
transformations of the space coordinates, so primes
will not be important for them.

The three kinds of time—space transformations will
be employed. They express relations between the
coordinates and time in the proper frame moving
together with the solid (primed symbols) and the
frame which is fixed in respect to the laboratory
(non-primed symbols).

The first of the transformations (I) are the well-
known Galillean transformations [20] having the
following form:

t=t (3) I
r=r+vt 4)

=0. 2)

where r = (x, y, z) is the radius vector.
The next (II) are the relativistic generalizedt
Lorentz transformations (c.f. [20,21])

t=‘y(t'+;—z> (5)1

r= r'—v[ivﬂf—")—yt] (6) L 11

v
where |
= (1—v¥/c?) 717 Uy

and c is the speed of light in vacuum. Although such
exact transformations are not needed in engineering
practice, we shall consider them though for the
theoretical and methodological reasons.

Transformations inverse to (5) and (6) will also be
used. They have the form [20]

¢ = (x-%) 8)
r= r+v|irv(yv; D -~ yl:'. %)

The third type of transformations (IIT) is
constituted by those which are based on Kar’s
concepts [13], ie. the “acoustic” transformations.
They have the forms that are analogous to (5)-(9)
but the basic speed is ¢, which is the speed of heat
wave propagation instead of ¢ [the factor y, = (1
—v?/c2)™ 12 is then used].

It should be emphasized that only transformations
Il yield a precise physical description. Transfor-
mations I, as is well known, are precise enough only
if v < ¢. Similarly, transformations III are sufficiently

+The velocity v is not, in general, parallel to the one of
the space axes.

precise only in the case when v < ¢, (since ¢, is of the
order of sound velocity, transformations Il are
practically applicable only to subsonic flows). Be-
cause all of these inequalities are fulfilled in the
majority of practical cases and the non-relativistic
equations are always more simple, it is useful to
discuss the heat-transfer equations derived on the
basis of all the three kinds of transformations.

The first (time or space coordinate) partial
derivatives of any scalar, particularly of temperature
T, are transformed according to the following rule:

‘T 2 cT
(({ ,\.Z‘n Ui ((:k - (10)
for i=0, 1, 2, 3 where [/, are the elements of the
column matrix

I =colit. xy, x,, x3). (1n
while a, = ¢l,/¢l; are the elements of the Jacobi
matrix corresponding respectively to transformations
L, I or 1II. For the second partial derivatives of any
scalar the following rule holds:

(';2 3 3 ‘:ZT
= iy =737 (12
alel, mZO ,Zo "Ll
where a,, = 0l,/0l; and a,; = ¢l}/ClL.
By substituting equations (3) and (4) into

(10)-(12) it may be proved that when coming to a
reference system in which the solid is in motion
(non-primed) the following relations (transfor-
mations rules) are valid for transformations I:

LT‘ <'If+v rddT—‘qz (13)
ar dt
grad' T = grad T (14)
(VZT), — VZT (15)
2 2
(;t£=(; 2 +2 grad< >+Vgrad(VgrddT) (16)
dv'=dv: dr =dr. (7)

Formulas (13) and (16) mean that the first and
second partial derivatives of a scalar are converted in
the laboratory (non-primed) frame, respectively, into
the first and second substantial derivative. Calculat-
ing d2T/d¢? as

T ¢T
=77 + 2vgrad o

+vgrad(vgrad T)+ gradT (16a)
the reader can check that the central expression of
(16) describes the expanded form of the second
substantial derivative when v = constant (inertial
frame).

For transformations Il the following rules are
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obtained with the help of equations (5)-(7) and
(10)-(12

erT erT dT
P y(a—t—i—vgrad T):y?

oy L (ALY
(grad' T)* — 2(&)

(18)

1 /éT\?
(grad T) 2 ( % > (19)
D’T =0T (20)
AT 92
=T
B 2
+vgrad(vgrad T) l =2 (iiTZT 21
dv'dr =dvde. (22)

In the case of transformations III, the formulas
analogous to (18)—(22) are valid, in which y, replaces
¥, ¢o replaces ¢ and the d’Alembert operator is
defined as (0,7, ie. it is based on the heat wave
propagation velocity c¢,. Because of this close
resemblance, the writing of appropriate formulas is
left to the reader.

By employing formulas (3)-(4) and (13)-(17) in
functional (1), the following functional for heat
conduction in a moving solid can be found:

=[5 o)

— (grad T)z:lexp( )dth (23)
which is invariant with respect to any Galillean
transformation describing the transition from one
inertial system to another (both systems may be in
motion relative to the observer). The condition of
stationarity for the functional (23) (Euler equation)
is the following wave equation of heat conduction in
a moving solid:

l(‘irli%-vgrad T)—VZT
a\ ot

1[&T eT
+C—%[ i +2vgrad*
+v grad(v grad T)] =0. (24)

A concise form of equation (24) is obtained by
using the operators of the first and the second
substantial derivatives [see the RHS’s of equations
(13) and (16)] as well as the Laplace operator which
gives:
1d2T
T a

lﬂ_vl

=0,
a dt

25)

+Many of the formulas given here are imparted with the
properties of three- or four-dimensional geometry cor-
responding to transformations I, II or III. The method
described in this paper may turn out to be not always the
most effective one but it is the most elementary since it does
not require the knowledge of these geometries or the tensor
calculus.
HMT Vol. 22, No. 4-G

ie. equation {(A) in the Introduction. Although
equation (25) is natural and simple generalization of
equation (2), the functional (23), which leads to this
generalization, is not known in the hitherto-
published papers (the functionals known so far are
not Galillean but, as we shall see later, they
correspond to transformation III). Similarly, the
functional which generalizes equation (1) in the
relativistic case (transformation II) is not known
either. Based on the above-given results, this fun-
ctional is, however, easy to obtain. It is enough to
note that equation (1) can be rewritten in the form:

i
_[ (grad TV~ -, (2?)2]}

3t
xexp( )dV dr, (26)

for which the invariant structure of equation (19) is
easily exploited. Using in addition formulas (8) and
(22) in equation (26) results in the following
functional for heat conduction in a moving solid:

S
1
x exp[(@)(t —Z—i)]dvm, a7)

The functional (27) is invariant with respect to
transformations II used for any two inertial systems
(with regard to the rule of velocity addition
corresponding to this transformation). The condition
of stationarity of the functional (27) is the following
Euler equation:

y (0T B T
Z(;-i—vgrad T) (V T_C (‘t')
1 1 62 aT
+ c3 c2 ¥’ ét

+vgrad(vgrad T)] =

2
+ vgrad T)

—(grad T)?

(28)

or, after introducing operators of the first and second
substantial derivatives and the d’Alembert operator:

ydT 1 d*T

a dt DT+<C0 c2>’ dr?
i.e. equation (B). Equation (29) is known from
literature. It has been obtained by Kranys [12] who
used a different method in which an invariant form
of the Cattaneo—Vernotte equation [see equation
(72)] in a time-space ct, x;, x,, x3 was combined
with the energy conservation law. However, the
variational principle [functional (27)] has not yet
been known. It leads to equation (29). As is seen, the
form of the functional (27) is somewhat complicated
and it is only the systematic approach used which

=0, (29)
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makes the finding of the functional possible. Note
that if it is assumed that ¢ — oo, then equations (27)
and (28) are, as is expected, simplified respectively
into equations (23) and (24),

The simplest functional and the corresponding
wave equations are obtained in the case when
transformation I11 is used {(this is the only reason for
employing this transformation at all). Since it is
based on the heat propagation velocity ¢y, the factor
in brackets before the exponential term of equation
{1} is transformed invariantly. The exponential term
itself has the form {30) [according to equation (8) for

= yqand ¢ = ¢y ]

01 o ( Vf’)
- 2
u Y [

Finally, equation (1), upon using transformation
1L is transformed into the following form:

= NG temar]

2,
X exp(‘iﬁ»—w—‘)dP de. (31
0

exp| - (30}

Fole§t~vr) } (
i

The Ea!er equation for the above functional is

a2
Yo T—i-vgradf 2T-~‘—,-I5 =0, (32)
chét

Cansidering that the use of transformation I1I has
physical meaning only for small velocities (v <€ ¢}, it
can be assumed that in equations (31) and (32) y,
= (1 ~p*/cd)"'* = 1. Equations (31} and (32}, sim-
plified in such a manner, are known in literature
{10, 17], see also equation (C}.

The present approach helps to understand the
fulfillment of the requirements of the special re-
lativity principle [21] by the original equations given
in [10], Namely, they are invariant with respect to
transformation IIl in the physically admissible case
of small velocities (v <€ ¢). However, for velocities »
comparable with the heat propagation speed, ¢, the
mentioned equations, as well as equations (31} and
(32}, become meaningless. This limitation should be
kept in mind despite the fact that the condition
» <€ ¢ is fulfilled in the majority of practical cases.

For v < oy, Le. when 7, — 1, equations (31) and
{32) yield the simplest possible description of heat
conduction in a moving solid, which ensures the
consideration of the limited heat propagation speed
cg- In these, rather rare, cases where the velocities ¢
are comparable with ¢,, the more complex eqguations
(23) and (24} are rather precise. They have wider
range of applicability and become meaningless only
for the velocities » comparable with the light speed ¢.
For v close to ¢, the relativistic effects appear which
are taken into account in equations (28) and (29).

Summarising the above, we conclude that the
available linear hyperbolic equations have the form
invariant with respect to one of the transformations,
I, 11 or 111. Thus, the unified approach presented here
ascertains, classifies and explains some basic

theoretical aspects. It will also be shown that this
approach allows a number of unknown results to be
obtained in the multipotential case involving the
coupled heat and mass transfer in flowing fluids.

3. A DESCRIPTION OF COUPLED
HEAT AND MASS TRANSFER FREE FROM THE
PARADOX OF THE INFINITELY FAST
DISTURBANCE PROPAGATION
For coupled processes it is necessary first 1o define
the basic structures of the hyperbolic equations in a
system at rest. Processes in a resting n-component
mixture with mechanical equilibrium conditions (P
= const) are now considered. In the present paper,
we shall restrict ourselves to the wave egquations
consistent with such a form of the phenomenological
equations {which link together the thermodynamic
fluxes and forces) which are based on our general-
ization of the equation obtained by Shter {227 who
modified Onsager’s [2] classical relationships.
The Shter modification takes inte account the
relaxation phenomena and has the following form:

Ji= 3 Ly ‘ X, (1
¥4

SO

WK%y de®, 37

where J{i=1....,n—1} is the density of the ith
component flux, while J, = J, is the density of the
irreversible energy flux. X,.’s are the thermodynamic
forces defined as:

By —H fﬁw
X1=grad<Tf) X 1—gmd< 5 v»),

1
X, =X —gmd(:r)

where g, is a chemical potential of the kth
component. The function K{(t—°} denotes the so-
called relaxation nucleus and it is the scalar function
in Shter's original formulation [22]. It leads to a
most approximate conclusion about a single re-
laxation time being common for all the fluxes.

In the present paper Shter’s equation is general-
ized in the supposition that the relaxation nucleus is
some matrix function K{r—1%), defined below, and it
was shown that this concept leads to a more proper
conclusion about the matrix of the relaxation
coefficients.t The generalized equation {33} has the
following matrix form:

e

J =j Kir—t"}LX dt° (L = constant}. (35}
o

34)

where
J=colid,. J;.....d, =34}
and X =col(X,,X,,..., {36)

{the matrix notation follows de Groot [2] de-

scription of the vector set J,,....J, and X,...., X,

X, =X,)

4

+The elements of this matrix can be computed with the
help of equation (57} in this paper. They are genevally
called the relaxation coefficients, but not the relaxation
times, since only diagonal elements have always the time
dimension.
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If it is assumed that the relaxation nucleus matrix,
K(t —t°), is equal to the product of the delta function
and unit matrix E, ie. K(t—1°) = 8(t—¢°)E, then
relations (35) evolve into the classical Onsager
relations:

J=1X 37)

or
= .:Zl Lika'

For an alternative form of the relaxation nucleus
(containing the matrix exponential function,t exp[
—t ' (t—19]), i.e. for the form

Kit—1%) =t Yexp[ -t~ ¢ —t9)],

relationship (35) can be written as

(38)

(39)

exp[t~'t]tJ =J exp(t”1O)LXdr°. (40)
o

Differentiating both sides of equation (40) with
respect to ¢t and simplifying the exponential term (the
exponential matrix is non-singular) give the follow-
ing matrix equation for a resting system:

0J
eg I =LX 1)
or
LA
Y kg = Z LuX,
=y Toot
(i=12.,mJd, =3, Ly =L (42)

Equation (42) represents generalization of the
phenomenological Cattaneo—Vernotte relationship
[see equation (72)] for a coupled multipotential
process.

Taking the divergence operator for (42) and
employing the mass and energy conservation equa-
tions, i.e.

,n—1)

EL_ —divd;, (=12, 43)

oh

— = —divJ,, 44
P p (44)
where y; is the mass fraction of a component, h the
enthalpy of mass unit yield the following system of
wave equations for mass and energy transfer in a
quiescent medium:

&%y &h oy,
Z pT’"‘ 5t2 +p”6t2+p at)

- Hn— Hpy 1
+ ; ijvz(—T—>+quv2(?> =0 (45)

Z By, &0k
p‘"" 5t2 Plaa gz TP 5

Hn— B 1
+ m; Lqu2<—T—) + LHV2<T) =0.

(46)

+The basic properties of functions of this kind are given in
the Appendix.

An equivalent matrix form of equations (45) and
(46) is

Pz 0z 5
— — =0 47
p15t2+p6t+LVu 47)
where
z=col(yy, Ve, s ¥nor H);
(BB Ma—H2 M Haog 1
u_.col< T T o T ’T)'
(47a)

The coefficients of equations (45) and (46) are linked
with the coefficients of equation (42) as:

Ly=L,forj=12,...,n—1and L = L,

In the general equation (47), there are no assum-
ptions regarding the matrix of the relaxation coef-
ficients ;.

In equations (45) and (46) the mass fractions y;
and the enthalpy h are functions of the transfer
potentials (u,—u,,)/T (m=1,...,n—1) and UT.
Thus, in order to go over to the group of
independent variables, the first of the variables (y;, h)
are expressed in terms of the other. The differentials
dy; and dh are described by the equations:

n—1 _ 1
dy; = % c,-md(”—«" . ”)+chd<7> (48)

m=1

n—1
Hn— H 1
= ™ dl—1}, 9
O =5 PO L
where the coefficients ¢, are the so-called capacities,
i.e. the first-order derivatives of y; and the enthalpy h
in relation to the transfer potentials. As for the

constant pressure, the following thermodynamical
relation is valid:

ny_ nl , M= Ko
d(7>*hd(1/T)+m;ymd< T ) (50)

then the capacities are the second-order partial
derivatives of the function u,/T with respect to
variables (u,—p,)/T (m=12,...,n—1) and 1/T.
This means that they fulfill the symmetry relations
¢ = Cp» (Lk=1,2,...,n), similar to the Onsager
symmetry relations L, = L,;, The matrix form of
equations (48) and (49) is:

dz = Cdu.

(1)

Substituting equation (51) into equation (47) and
assuming that the coefficients c¢; and Onsager’s
coefficients L;, are constants which are evaluated at
the same reference state (7°,y9,...,y%_,) defined
within the region considered (the assumption typical of
thelinear thermodynamics), the following linear matrix
equation is obtained:
gtz + C%E+LV2u =

The two symmetrical matrices are linked with this
equation, namely: the positively-determined kinetic

ptC (52)
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Onsager matrix, L = [L,], and “thermostatic” mat-
rix of capacities, C = [¢,]. It is meaningful that the
matrix C is negatively determined, because it is that
very matrix which appears in the fluctuation theory
for a squarc approximation of entropy deficiency of
closed system caused by the lack of thermodynami-
cal equilibrium in the system,t see [2. 16].

4. COMPUTATION OF THE RELAXATION
COEFFICIENTS

The phenomenological equation (41) or (42) and
also the wave equation {47} or (52) are equally well
applicable when the matrix of the relaxation coef-
ficients t is given independently of the matrices L
and C as well as when there is some relationship
between the elements of these three matrices.

For ideal gases, this relationship is a consequence
of the fact that the speed of propagation of thermal
and mass waves {and also of 4 momentum wave) are
identical. 1.e. that the propagation speed, ¢,. has a
scalar nature, This identity is a result of the kinetic
theory, see [24, 26, 27, 10], and holds for the
molecular transport of heat, mass and momentum. It
appears [ 23, 27] that the propagation speed is of the
order of sound speed under the given conditions.

For liquids and solids. the assumption about the
scalar nature of the propagation speed is a hy-
pothesis, which might be partially supported by
comparing the relaxation times data for heat transfer
1, given in {2811 with those for momentum transfer
T,,» evaluated in [29]. 1t turns out that ratios t,/1,
are of the order of Prandtl number in accordance
with the hypothesis. However, it is clear that such a
hypothesis can be valid only in the case of the same
mechanism of heat and mass transport {as assumed
in Section t of the present paper). Consequently, it is
expected that the hypothesis will apply in homo-
gencous fluids (with thermal diffusion occurring as a
cross-effect) and that it may not be true, for example,
for the drying processes where a multiple mechanism
of transport can occur. In this last case, the overall
mechanism should be deduced from the partial
mechanism to which our theory can apply.

Let us consider which of the restrictions on the
matrices 7, L and C results from the condition of a
scalar nature of ¢,. That this could be accomplished,
it must be remembered that such a restriction should
also be valid for the case of pure heat transfer in a
one-component fluid. In such a case the definitions
of the thermal capacity coefficient. ¢,, equation {49},

+1t appears that in our (isobaric) case

{ { U -y ]
BS.iged = E{A =R A( - V—VI)A,vk}

n l
Y caduhduy = s
1 4= =

B

b o—
=

t
where 875 is the second derivative of entropy which is
always negative, c.f. { 16] for more information.

*The shear relaxation times given in [28] are over-
estimated and should not be considered.

and also the thermal conductivity 4 lead to relations
cp= —C, (T (53)
Ly = MT = pCalT" = —pcja (54}
where a is the thermal diffusivity and C, the well-
known heat capacity.
In the case considered, the relaxation time for heat
transfer, 1, is a scalar related to the thermal
diffusivity a = D, by the known equation [4]:

43

Ty = 5. (55)
Co
Hence, substituting (54) into (55) yields
0 = (56)
7

The above equation defines the thermal relaxation
time, 1, in terms of the parameters we are interested
in, ie. L, and ¢, The general matrix relationship
sought (which links 7, L and C) should also reduce
to equation (56) when the fluid becomes one-
component. For a scalar nature of the propagation
speed, such & condition is fulfilled by the matrix
relationship:

(57)

This enables one to compute the relaxation
coefficients t; on the basisy of the capacities ¢,
equations (48) and (49), and the Onsager coefficients
L,- The propagation speed appearing in equation
{57) can be computed from the known formula [4]

o= (Gip)'?, (58)

where G is the modulus of shear rigidity that can be
found theoretically or experimentally {28,29]. For
ideal gases G = P, ie. the modulus of shear rigidity is
just a pressure [24] and hence ¢, = (P/p)"'* [26].
These results hold for the isobaric case (see [27] for
some alternative consideration). In an isohoric
process, C, should rather appear instead of C,, in the
energy equation and then, as shown in [23], the
more proper result should be ¢o = [(C,P)/C,p]'"%,
the speed of sound. The sound speed is also
suggested to be taken as a first approximation of ¢,
in the case of liquids [28], where C, is close ta C,,
especially as an ultrasonic velocity at low frequencies
(see example below).

Based on equation (51) and the data for Onsager’s
coefficient from [30], the data of capacities and
relaxation times were found for an isothermal
Na,SO,/H,80,/H,0 system in Michalski's MsD
thesis [31] supervised by the present author. A
sample of these data, based on the sound speed ¢, is
given in Table 1 below.

§Note that —LC Yp = D. Here D is the diffusivity
matrix, in agreement with definition of D in {2]. Hence 1,
= D,/ct, as in the case of pure heat transfer where 7,

)
= g/cq.
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Table 1. Data of Ly, ¢, and 1, for an isothermal Na,SO,/H,SO,/H,0 system evaluated
under the conditions 7 = 298.3K, P = 10°Nm~?, p = 1163kgm ™3, ¢, = 1387ms ! and
for molal concentrations mna,so0, = mu,s0, = 1‘0832m01kg’2l (the coefficients L,, and
L,, were taken from experiments of [30]; hence there is sontt Qifference between L,, and

Lyy)
L,kg?KI 'm~ts™1) cy(kgKJ™h) Ti(s)
Ly, = 9.9695x 10710 ¢y = —6.3089 x 1074 7y = 06763 x 10713
Ly, = —3.4992 x 10710 1= 0.3876x 1074 tys = —04852x 1071
L, = —3.1376 x 10~ 1° ¢yy = 03876 x 10~ ) = —0.1558 x 1071

L, = 80049 x 107 '°

Crp = —23494x107*

15, = 1.4967 x 10713

It may be verified that the values of the diagonal
relaxation coefficients equal by the order of mag-
nitude those for isothermal binary systems
Na,50,/H,0 and H,S0,/H,O, the latter being
computed with the help of common definition 7,
=Dyc;? It was found: t, =0.3535x107'%s, 1,
= 09527 x 107*5s, respectively. Under the assum-
ptions of the present work, heat relaxation time is 1,
=0.663 x 107 13s.%

5. BASIC EQUATIONS OF COUPLED PROCESSES
IN THE PRESENCE OF RELAXATION EFFECTS
Substituting expression (57) into the phenomeno-
logical equation (41) and into the wave equation (52)
gives respectively the following matrix relationships

-1

J=Lgradu +L

oy, (59)
Co
since X = grad u, [see (34) and (47a)] and
éu , o%u
- — == 0 6
pCo + L(V u 655[2> (60)

Equations (59) and (60) together with the following
matrix equation [resulting from (43), (44) and (51)]
describing conservation laws

CQE = —VJ, (61)
ot

constitute the basic equations which characterize the
coupled heat and mass transfer in the presence of
relaxation effects. It can be readily seen that taking
divergence of both sides of equation (59) and using
the conservation law (61), the wave equation (60) is
obtained.

In applications, the wave equation (60) is most
important. Its solution at the pertinent boundary
conditions for example

u(X, Vs 2, 0) = uO(x7 Vs Z) (62)

“(xx» Vo Z5o [) = us([) (xs’ Ve ZS)ES (63)
& -’ ) O

i“(;éltilﬂ) (=123 (64)

allows determination of the fields of transfer poten-
tials u(x, y, z, t).

+The order of magnitude of 1, agrees with evaluations in
[28] for liquids.

An equivalent notation of relationships (60) is
given below in the form of a set of the scalar wave
equations

"o ¢ Hp— Uy ¢ ("‘-Vf
m;pcj'"ﬁ< T )P\t )T
n—-1 _ 1
- _ K2 R T
DAL

1 1 &2 /1

Py (i PSS
()35

1
L1 12/
ol P(r) g (7)) -0

Just as in the case of pure heat transfer, equation
(2), equations (65) and (66) contain d'Alembert’s
operators that replace more common Laplacians,
since relaxation effects have been taken into account.

Equations (59) through (66) operate with the
absolute temperature reciprocal 1/T as an energy
transfer potential and not with the temperature T
itself as it is usually done in the special case of pure
heat transfer. Therefore it is of interest to see how the
equations mentioned evolve into the known non-
Fourier equations in the special case mentioned. For
pure heat transfer, equations (59) and (60) take the
form

1 Lyt ad,
J, = L,grad T + a & 0 (67)

o1 1 18%2/1
i) (755 ()]0 @

Substituting equations (53), (54) and (56) into
equations (67) and {68) and using relationships:+

+Approximations (70) and (71) require stronger assum-
ptions than (69) since they result from identity:

&T 2 /eTV? L8t /1
=) —T 5|
éxy T \0x; exi\T

in which the term containing the square of small value of
0T/dx; was neglected.
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o _(qop (L
=Ty (T) (69)
2T o B (1
e ’r(r) (7o)
*T , 8 (1
= mrly) o

gives the known Cattaneo-Vernotte equations (cf.
[1,4.5D:

N 6Jh
J,= —Agrad T«rré-t-—

L. &Y

(72)
{73)

Thus, we have shown, on the simplest example, that
under the linear theory assumptions the wave
equations based on various transfer potentials {e.g.
on T and 1/T) can be transformed analytically, one
into another, if a conventional requirement of the
irreversible thermodynamics that the gradients
should not be too large is met here for both space
and time derivatives. It can be also shown that our
conclusion is valid for various transfer potentials
{uy,tg,. .., u,) in a general coupled case. The analysis
below provides some example which focuses this
question in a nontrivial way.

6. TRANSFORMATION OF FLUXES AND
FORCES AND CONSTITUTIVE EQUATIONS
FOR BINARY THERMODIFFUSION

In the case when the definitions of the thermody-
namic fluxes and forces are changed according to the
known rules of the Onsager irreversible thermody-
namics, see [2], it can be shown that all of the
general formulas derived previously, will remain
valid for the new fluxes, forces and capacities. We
shall discuss this important problem more exten-
sively in another paper. Here we shall restrict our
attention to the most simple example of isobaric
binary system.

1t is well-known, see ¢.g. { 2], that for the heat flux
of two-component mixture, defined as

I =0, —(h — ),

provided that the mass flux is unchanged, ie. for J}%
=J,, the thermodynamic forces resulting from
invariancy of entropy production are:

B2 iy
X¥ = grad|{ —=——
i=8 ( T )T,P
1

@y})
= ——=\5=] grady, (75)
2T (C}’x TP !

(74)

1 -1
X¥=X,= grad(i,«) =57 grad T

{the Gibbs—Duhem equation was used in the first of
equations (75)]. Our new capacities should now be
consequently defined so that the following equations

STANISLAW SIENIUTYCZ

should hold for P = constant:

Pa— it 1
dvl_cld( ZT 1>T.P+c>;qd<?> (76)

dh— (hy—hy)dy, = C:l

1
+c;;qd<7;) =C,dT (77)

[compare the RHS of equation (74) and the LHS of
equation (77)]. Substituting the following thermody-
namic formula (cf. [2]):

Ha— 1 Ha— Hy
o7 - eomlzoa), o

into equations (48) and (49), applied in the case
when n=2, and computing the differential ex-
pressions dy; and €,d7, it can be shown that the
new matrix of capacities is again symmetric. Further-
more, it results that this matrix is at the same time
diagonal, ie. it is of the form C* = diag{c¥,,c},)
where (after using the Gibbs—Duhem equation}
S R - L
B a(#:—m) Gunlorry )
/ T T.P

e, =—-C, T

aq

and
(80)

The Onsager matrix, expressed in terms of more
popular coefficients, i.e. the diffusion coefficient D,
thermal conductivity 4 and thermal diffusion coef-
ficient D, is

N
. | pyTD 2
C e ey DT
L* =(11 e - (Cu1/Cy1)pr T
‘L’zk1 L;kq P}’1Y2T2Dr T?A

(81)

as it results from the definitions of D, and Dy given,
e.g. in [2]. Hence, substituting equations (79), (80)
and (81) into equation (57) makes it possible to
directly compute the relaxation coefficient matrix as

1‘9 y192Dr |
oo Ot a C,c
och TBTy ("{ ) bl
i 3
[ <t oy Jer PGy i

{82)

it is convenient to express the matrix (82) in terms of

the diffusional and heat relaxation times, defined

according to the known definitions [4,25] as
D a A

=i %= 5= e
AN A TeR

(83)

We must also introduce the following relaxation time
for thermal diffusion

S L (84)
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Thus the matrix of the relaxation coefficient (82) ist

Y1¥aTr
T,
¢ C,T

5!&)
’r“? —_—
LT 1(8}’1/?,7

Now using equations (81), (85} and (75) in the general
phenomenological relationships {41}, the following set
of constitutive equations is obtained:

(85)

T =

Jy = —pDgrad y, ~py v, Drgrad T

AR H
‘Yo  C,T &

J¥ = ~py, TDy 2} grady, —Agrad T
FI

V1

(o o (o
("E)P.T 17r ot Ty at s (87)

which describes coupled heat and mass transfer in
binary fluid in the presence of relaxation effects. This set
is suggested to describe non-stationary thermal
diffusion with finite wave speed.

Taking divergence of equations (86) and (87) and
using conservation laws, equation (43) for n = 2, as
well as the following equation,

T

pC, e ~divJ},

(86)

(88)

the following set of wave equations are obtained in the
constant coefficient case:

ay
pé‘; = pD0oy; +0D7y1y,0,T (89)
aT u .
Pcpa_ =Py, TDT(K;); TDOyI +A0T (90)

which operate with d’Alembert’s operators based on
the propagation speed. Thus, the d’Alembert’s oper-
ators should, as a rule, appear in the equations of
change to resolve the physical paradox of the finite
speed of disturbances. If, however, this speed is taken
to approach infinity, then equations (86) and (87) as
well as {89) and (90) simplify to the known
conventional form without the relaxation terms, see
eg [2].

We see that we have found a self-consistent
description of the coupled relaxation phenomena. It
has the properties that lead to the classical de-
scription when the propagation speed is assumed to
be infinite.

7. VARIATIONAL PRINCIPLE FOR
THE WAVE EQUATIONS OF THE COUPLED
PROCESSES IN THE RESTING SYSTEM

The matrix wave equation (60) or the scalar
equations (65) and (66) were formulated for the case
of a quiescent medium (proper frame). We shall try,
first of all, to find a variational principle for this case.

t1In the case of an ideal system the derivative (0u,/0y,)r p
appearing in the equations derived equals

RT
yifM =y, (M, ‘Mz)]'
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This will result in generalization of the functional (1)
for the coupled transport processes, the generali-
zation being unknown so far. Then, using the
time-space transformations I-III in the quiescent
medium functional, we shall find the functionals
describing simultaneous mass and energy transfer in
moving media. Their forms will of course depend on
the type of transformation (I, II or III), but not for
too large velocities, used in most practical cases, the
results will be similar.

We shall begin our reasoning with construction of
an alternative form of the functional describing a
pure heat transfer in which the temperature re-
ciprocity 1/T [and not the temperature T as in
equation (1)}, is the transfer potential. For such a
form it will be easier to find the matrix generali-
zation of this form for the multipotential case with
coupled heat and mass transfer. Substituting equa-
tions (53), (56), (69), (70) and (71) into expression (1)
yield the functional

= [[[]au (o r) -5 ()]

x exp(—Ly ‘eypcitydVide  (91)

which is equivalent to the functional (1) with an
accuracy to the constant multiplier (the primed
symbols are again used for transformation purposes
since the proper frame, moving together with the
medium, is considered first). It may be easily verified
that for the constant phenomenological coefficients
L,, ¢, and ¢, (under the assumption typical of the
linear theories) the stationarity condition for equa-
tion (91) is the wave equation (68).

To obtain the variational principle for a coupled
heat and mass transport we shall investigate the
stationarity conditions for the following matrix
generalization of the functional (91):

s:jﬂfﬁawm'
1
= Ujj 3 {grad’ u exp{—CL " !pcit)Lgrad’ u

o
1 ou” Ou
~ — ——exp{—~CL ™ 'pcdr )L —3dV'dr (92
C% é’t' p( pcO ) at, ( )
with respect to all of the components of the transport
potential vector
Hn—ly = iyog 1
= ¢ol yeers L — 1.
! ( T T T)
We shall show that these stationarity conditions lead
to the wave equations (65) and (66), i.e. to the matrix
equation (60). In the following proof it is important
that the matrix function appearing in equation (92),
i.e. the function

B = exp(—~CL 'pcit')L = exp(z " 't)L  (93)
has a property of symmetryt, i.e.
B = B”, (94)

tSimilarly to Onsager’s matrix L, the generalization of
which is, in some sense, the matrix B.
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and that this is a consequence of the symmetry of
matrices L and C. The proof of this property
together with some basic information concerning the
exponential matrix function exp(Ar), where in our
case A = ¢!, is given in Appendix.

In the orthogonal curvilinear coordinates and for
the Lagrangian given by equation (92), the set of the
Euler equations for the variables u,, u,....,u, has the
following matrix form

¢ éA . éA éA
—| 4 div[——— |- = =0 (95)
ét' | d(cu/ar’) dgrad’u ‘u
where in our case dA/éu = 0.
Since the matrix B is symmetric, we obtain
oA ou
—Cg—————= —CL 'pcdt )L —— 96
Co Awar) exp( peot’) colt (96)
and
oA = CL 'pcit)L grad’ 97
Fgrad"u = exp(— pept)Lgrad'u. (97)

Substituting equations (96) and (97) into (995),
applying the formula for the product derivative of
the matrices B and du/dr and employing the basic
property of the matrix exponential function

%,exp(At’) ~ exp(A)A, (98)
(&

(see Appendix) gives the relationship
exp(—CL ™ pcir)

o%u ou
L| Viu——— C—i{=0, (99
Xl: ( u Cé@t'2>+p 5[1 99)

from which the matrix wave equation (60) results, or,
the set of the scalar equations (65) and (66). For a
resting medium, we thus find the variational prin-
ciple that leads to the coupled mass and energy
equations. It is of interest that this principle replaces,
in some sense, the principle of minimum entropy
production valid only in a stationary case [2].
Indeed, in the time-space x, y, z, ¢,t, introduced in
[10], the functional (92) may be written in the form

1
S = 5”” J,V,udQ  (dQ =dv'dr), (100)

where J, =(J,, J,. J., J,) is comprised of four
vectors of the n substitutional fluxes with the
coordinates defined by the RHS of equations (96)
and (97). (Note that in the space considered the
scalar-product a,b, is defined as a,b,—ab and the
vector operator is

v = ¢ - =0 =0
T Blegt) T Ex, 8xy Oxs |
See [10] and [32] for more information about the
space mentioned.)

The functionals (92) or (100) can be broken down
into the product of the time increment by the
functional of a half entropy source if the exponential
term and the terms with time derivatives (stationary
process) are ignored.

The functional (92) allows formulation of the
variational principles for the moving medium, which
are invariant in the sense of transformation I, II or
I1I (see the following section).

8. VARIATIONAL PRINCIPLES FOR
WAVE EQUATIONS OF COUPLED HEAT AND
MASS TRANSFER IN MOVING MEDIA

Now, with formula (92) available, we can easily
write the expressions for the action functional in the
case when the medium moves with a constant
velocity v. It is sufficient to make transformations 1,
1T or III (Section 2) in the functional (92), as it was
done previously in the case of pure heat transfer. In
this manner the Galilean functional is obtained for
transformation I:

= IJ1):

1 [éu T 12
-3 —+vgradu ) exp(—CL™ 'pcir)L
[}

graduT exp(~ CL ™ 'pc3t)Lgrad u

it
Ju
X (;; + vgrad u)}dth. (101)
1%

After analyzing the structure of (27) and substitut-
ing equations (8) and (18)-(22) into the functional
(92), the following functional is found for transfor-
mation II

1 .
]3]

1 ou” vr
x Lgradu—— Texp[ -CL” ‘pcf,y(r - z)}
e o c
u 1 1\/éu T
XL~+‘2 5~ 3 —-— 4+ ad
a (cz c(,)((?t Ve u)

X exp[ -CL~ 1pc§7<t - g):\

on
x L(—a—t +vgrad u)}dth.

For transformation III the fundamental velocity is
¢o. Hence the functional (92) transforms into the

simplest form

1 ' vr\

S= jjjji{graduT exp —CL"pcéyo(t—iﬂ
. Co

t ¢

x Lgradu— 2 ‘:T exp[ —CL !pedye

9]

A T
x (t—g)]La—}!}dth.
cg) | ot

We shall write the stationary conditions (Euler
equations) for the functionals (101)-(103). Taking
the components of u, i.e. potentials

Hp— My Hp—Hp—1 L

T T 'T’
as varied variables, the Euler equations are obtained
that generalize the matrix equation (60) or the set of

(102)

(103)

PRSP
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the scalar equations {65) and (66). For transfor-
mation I [functional (101)] this generalization has
the following simple operator form:
du , Ld%
pCdt + LV dap =0

The result obtained is in agreement with the
alternative method in which the direct substitution of
transformation relationships {equations (13)-(16}]
into equation (60} is made. The direct substitution is,
as a rule, simpler than the variational method, but it
looses the option of obtaining the valuable func-
tionals for moving media {equations (101}-(103}],
these functionals giving additional possibility to
solve particular wave equations with the use of direct
variational methods. Since, however, we have just
these functionals known, therefore, the direct sub-
stitution of the time-space relationships into equa-
tion (60) may be used for verification. This was also
the method used in the present paper yielding the
same result as the method based on the Euler
equations.

For transformation I the already described equa-
tion (104) was obtained, while for transformation II
[functional (102)}

(104)

du /1 1Y), d?u _
*d—t+(gi—c%)/ Ldt2 +LOu=0.

This matrix relationship constitutes the generali-
zation of Kranys’ equation, cf. [12], for the case of
coupled mass and energy transfer. Taking into
account that equations (53), (54), {(69), (70) and (71)
hold for pure heat transfer, one may indeed show
equivalency of equations (105) and (29) in this
special case.

For the functional (103), transformation III, the
stationarity conditions take the simplest form

pyC (105)

p7,C %? +L0Ogu=10 (106)
where the coefficient y, and the d’Alembercian [,
are based on the propagation speed ¢, Since
transformation III is acceptable for small velocities,
v <€ ¢q, the approximation y, = 1 can be made in
equation (103). Equation (106) with y, =1 is then
obtained as a stationarity condition of the functional
(103) simplified in this manner. This simplification
gives the following set of the scalar wave equations:

~1
Pn— B 1
L;,O (—>+L. O (‘)=0
";1 i o T jg—0 T
107
drh ] Ho—Hm 1
pa+m§1 LquO( T +quD0 7: = 0
(108)
which represent the set of the simplest possible
equations allowing for a finite propagation speed.
This set was suggested without proof by the present
author in [34]. In case when co— oo the set

simplifies to the set of the classical parabolic
equations given by de Groot [2].

n

|
pdr

The knowledge of the action integrals equations
(1), 23), (27}, (31) and (101)-(103) provides us with
the method of obtaining the functionals given by
direct variational techniques as, for example, in the
Ritz or Kantorovich method, c.f. {14, 15].

Numerical examples of such an approach to
equation (1) are given by Vujanovic (non-stationary
cases) in his series of articles, see eg. [17] and [18],
as well as by Kashkaha [33] (the Ritz solution in
stationary, classical cases). The variational method
of finding the transfer potential fields is usually
characterized by a considerable accuracy, see eg.
author’s simple example in [10]. It can be effectively
used especially for the case of complex boundary
conditions.

9. DISCUSSION OF RESULTS
AND SIGNIFICANCE

Using systematically the time-space transfor-
mation equations in the functionals and wave
equations for quiescent media, the appropriate
functionals and equations were found for a medium
moving with a constant velocity v. The wave
equations obtained in this manner are also valid for
any clement of a moving fluid in which the
distribution of velocity v (x, y, z, t) occurs.

A logical self-consistent theory of the wave
equations for the coupled processes with simul-
taneous heat and mass transfer was developed based
on the phenomenological equation (41) of the non-
Onsager type that simplifies to the classical Onsager
relation in the case of an infinite speed of pro-
pagation, ¢,. Such a simplification can especially
result from the new important formula, equation
(57), which describes the matrix of the relaxation
coefficients 1 as a function of the two basic matrices,
the kinetic matrix of Onsager’s L and the static
matrix of capacities C, which are well-known in the
irreversible thermodynamics. It appears that all of
the matrix relationships obtained for coupled heat
and mass transfer generalize non-trivially the
known relationships for pure heat transfer.

The role of the exponential matrix function should
be especially pointed out which plays a crucial part
in our generalization of Shter’s expression [22] for
the relaxation nucleus as well as in formulation of
many new variational principles for coupled heat
and mass transfer. This matrix function generalizes
nontrivially the scalar exponential function exp(t/t)
appearing in several variational principles for-
mulated earlier [18, 10, 33] for pure heat transfer
and other uncoupled cases.

Application of the time-space transformations in
the functionals of resting media lead directly to the
adequate functionals describing these media in
motion. This simple systematic approach reveals
some interesting feature of the hitherto existing
variational principles [17, 10, 33, 34] applied to pure
heat transfer or other uncoupled cases. Sometimes
these principles contain velocity v (and not the speed
of light ¢) in the exponential function and, as such,
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they are neither of the Gallilean nor of the relativistic
type but rather of acoustic or “second sound” type
[compare e.g. the functionals (23), (27) and (31) to
reveal this conclusion]. Although it does not usually
introduce considerable errors, it should be re-
membered that the principles quoted f{and cor-
responding Ritz solutions) will become meaningless
for the velocities v comparable with the sound speed
whereas the Gallilean type variational principles will
still be sufficiently accurate. The material contained
in this paper allows one to perform such critical
analysis and to make necessary adjustments.
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APPENDIX

Some basic information concerning matrix exponential
Junction, exp(At), as well as a proof of the symmetry
property of the matrix function B
Let A = [a,] be a square matrix of order n {in the case
of this work it can be the matrix A = t7!). The matrix
function defined as [35, 36]:
o r
explAt) = 3. Aﬁf» (A}
p=0 P
is called the exponential function of the square matrix A
with the parameter ;. It is proved that the series {Al) is
absolutely convergent for the arbitrary square matrix A.
Assume that the two matrices A and D are commutative,
i.e. AD = DA. Then the fundamental property of the matrix
exponential function is:

exp(At)exp(Dr) = exp(A+ D). {A2)
1t results from (A1) that
[exp(AN]T = exp(ATt) (A3)

[compare equations (A6) below]. Furthermore, it can also
be shown, see (A1), that

%[exp(At)] = Aexp(At) = exp(At)A (Ad)

[compare equation (98) in the text].
Let A, be the square matrix similar to the matrix A, e.g.

A, = LAL™! (detL # 0).
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Then, exploiting the obvious properties of similar matrices
LA+D)L ' =LAL ! +LDL™*
and
L(AD)L™! = LAL"'LDL"!
it results from equation (A1) that
exp(LAL™'t) = Lexp(At)L™! (A5)
[consider equations (A6) and (A7) below].

The computation of the elements of the matrix exponen-
tial function is an important problem, well-established in
algebra [37]. The following methods are used:

(a) transformation of exp(At) into a canonical form.
Then exp(At) equals M exp(At)M ™! where M is the modal
matrix and A = diag(4,,...,4,).

(b) summing up of the series (Al);

(c) use of the Laplace transformation;

(d) application of the Cayley—Hamilton theorem,

see [37]. If the order of A is larger than 4 + 5, the use of
computer is recommended.

We are now prepared to prove the symmetry of the
matrix B, equation (93), in the text. Since

B = exp(—CL™'pcit')L (93)

and property (A3) holds, then taking into consideration
that

L=L" and C=CT,
one has
BT = Lexp(—L™'Cpcit’)
= Lexp[ —L " }(CL™!)Lpcit]. (A6)

But from property (AS) it results that the above result
equals

B = LL~'exp(~ CL™'pct')L = B (A7)

and the proof is completed.

LES EQUATIONS D’'ONDE POUR LES TRANSFERTS SIMULTANES
DE CHALEUR ET DE MASSE DANS LES MILIEUX MOBILES

Résumés—On obtient la solution fonctionnelle des équations d’onde linéaire qui gouvernent la
conduction thermique aussi bien que les transferts simultanés de chaleur et de masse dans les milieux
mobiles (dans la représentation d’Euler). Ces fonctionnelles sont trouvées simplement & partir des
équations de substitution par transformation espace—temps en fonctionnelle d’un milieu immobile qui,
dans le cas général, contient une fonction matricielle comme terme principal. Cette fonction est associée a
la matrice des coefficients de relaxation qui apparaissent dans une relation générale flux-force, équation
(41), qui généralise I'équation de Cattaneo [1] pour le cas multipotentiel et qui couvre I'expression
classique d’Onsager [2] quand les effets de relaxation sont négligés. Une synthése des équations linéaires
d’onde et des principes variationnels correspondants est obtenue en méme temps que de nouveaux
résultats. La théorie mathématique des transferts simultanés de chaleur et de masse avec effets de
relaxation, est développée et on donne son application directe a la diffusion thermique dans un fluide &
deux composants. Cette théorie montre, en notation tensorielle, une importante et remarquable analogie
avec la théorie de la conduction thermique basée sur un flux thermique autre que celui de Fourier.

DIE WELLENGLEICHUNGEN FUR GLEICHZFITIGEN WARME- UND
STOFFUBERGANG IN BEWEGTEN MEDIEN—STRUKTURTEST,
ZEIT-RAUM-TRANSFORMATION UND VARIATIONSRECHNUNG

Zusammenfassung—FEs wurden die Funktionale hergeleitet, die auf die linearen Wellengleichungen
fiihren, die sowohl diec Wérmeleitung als auch den gleichzeitigen Wirme- und Stoffiibergang in bewegten
Medien beschreiben (in Eulerscher Darstellung). Diese Funktionale werden einfach ermittelt durch
Einsetzen der Gleichungen der Zeit-Raum-Transformationen in das Funktional fiir ein ruhendes
Medium, welches im allgemeinen Fall eine Matrixfunktion als wesentlichen Term enthilt. Diese Funktion
hingt mit der Matrix der Relaxationskoeffizienten zusammen, die in einer allgemeinen Stromungs-
Energie-Beziehung vorkommen, Gleichung (41), welche die Cattaneo-Gleichung [1] fir den Fall
mehrerer Potentiale verallgemeinert und die bei Vernachlissigung der Relaxationseffekte auf den
klassischen Onsager-Ansatz [2] fithrt. Neben vielen neuen Ergebnissen wurde eine Synthese der linearen
Wellengleichungen und der zugehérigen Variationsprinzipien erreicht. Die logisch konsistente
mathematische Theorie des gleichzeitigen Wirme- und Stoffiibergangs mit Relaxationseffekten wurde
entwickelt und ihre direkte Anwendung auf thermische Diffusion in einem Zwei-Komponenten-Fluid
angegeben. Diese Theorie zeigt, in Matrizenschreibweise, eine wichtige und bemerkenswerte Analogie zur
Theorie der reinen Wirmeleitung mit nicht-Fourierschem Wirmestrom.

BOJIHOBBIE YPABHEHUA 1J14 OAHOBPEMEHHOI'O NEPEHOCA TEIJIA
H MACCBHI B IBHXYUIHUXCA CPEJAX — AHAJIU3 CTPYKTYVYPHI,
MPOCTPAHCTBEHHO-BPEMEHHBIE MPEOBPA3OBAHUS 1 BAPUALIMOHHBIN NOAXO0]

Annorauns — TTonyyeHbl (PYHKUHOHAMBL, C MOMOLLBIO KOTOPbIX MOXHO BbIBECTH JIMHEHHBIC BOJHOBBIC
YPABHEHHNS, ONHKCBHIBAIOILME TEMNJIONPOBOJAHOCT, 4 TAKKE OJHOBPEMEHHBIH TENNO- H MACCONEPEHOC B
ABHXYUIMXCS cpedax (B sijiepoBoM npeactasjieHny). JlaHuble (yHKUMOHA/B MOJY4alOTCA MyTEM
NpOCTOH NOACTAHOBKH MPOCT PAHCTBEHHO-BPEMEHHbBIX COOTHOWIEHHH B (GPYHKIIMOHAN /1S HEMOJABHXKHOM
cpeasl, KOTOPbIi B 0OLIEM CllyYae B KAYECTBE BAXHOIO KOMMOHEHTA COAEPKHUT HEKOTOPYIO MATPHYHYIO
dyuxumio. IT1a GpyHKUHA CBAIAHA ¢ MATPHLEH PEelAKCALMOHHBIX KOXPHHUMEHTOB, KOTOPBIE NOABIAIOTCH
B ofLIEM COOTHOLIEHHH AJIA TOTOKOB M CHJ B YDaBHEHHH (41), C NMOMOLIBIO KOTOPOTO MOXHO
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000b1HTL ypasHenne KarTaneo [1] A1 MHOTONOTEHUHAILHOTO ClyMds ¥ KOTOpPOE B npeHebpekeruu
peaKCaHHONRBIMH 3]MEKTAMH NEPEXOAUT B Kiaccuyeckoe sbipakerue Ousarepa [2]. Hapaay ¢ muo-
FHMH HOBBIMH PE3YALTATAMH NOYYEH CUHTES THHEHHBIX BOIHOBLIX YPABHEHUI C COOTBETCTBYIOMIMMH
BAPHALUMOHHBIMH HPHHUMIIAMHA. Pa3BUT4 NOPHYECKH COrT4COBAHHASN MATCMATHHCCKAR TCOPHA OJHO-
BPEMEHHOIC TEIIO- H MACCONEPCHOCH, B:&;xmqa}ou{au PCIAKCALKOHHBIC 3¢fbexnu H [OKa3aHOo, KaK ¢¢
MOXHO HETIOCPEACTBEHHO NPUMEHHUTL K Cilyuaro Auddysuu Tenaa 8 ABYXKOMMOHEHTHOH XHAKOCTH.
BaxkHbIM #B.18€TCH TO MTO B MATPDHYHOM NPCACTABNCHHH JaHRAS TCOPUSN GHATOTUMHA TCOPHH YUCTOH
TCHIONPOBOAHOCTH, KOTaA TCIIOBOR NOTOK HE AOAMUHACTCS 3RKOHY d)ypbe.



